Publications by authors named "Ariel Grostern"

The bacterium Pseudonocardia dioxanivorans CB1190 grows on the cyclic ethers 1,4-dioxane (dioxane) and tetrahydrofuran (THF) as sole carbon and energy sources. Prior transcriptional studies indicated that an annotated THF monooxygenase (THF MO) gene cluster, thmADBC, located on a plasmid in CB1190 is upregulated during growth on dioxane. In this work, transcriptional analysis demonstrates that upregulation of thmADBC occurs during growth on the dioxane metabolite β-hydroxyethoxyacetic acid (HEAA) and on THF.

View Article and Find Full Text PDF

Pseudonocardia is an actinobacterial genus of interest due to its potential biotechnological, medical and environmental remediation applications, as well as for the ecologically relevant symbiotic relationships it forms with attine ants. Some Pseudonocardia spp. can grow autotrophically, but the genetic basis of this capability has not previously been reported.

View Article and Find Full Text PDF

1,4-Dioxane (dioxane), a probable human carcinogen, is used as a solvent stabilizer for 1,1,1-trichloroethane (TCA) and other chlorinated solvents. Consequently, TCA and its abiotic breakdown product 1,1-dichloroethene (DCE) are common co-contaminants of dioxane in groundwater. The aerobic degradation of dioxane by microorganisms has been demonstrated in laboratory studies, but the potential effects of environmentally relevant chlorinated solvent co-contaminants on dioxane biodegradation have not yet been investigated.

View Article and Find Full Text PDF

The groundwater contaminant 1,4-dioxane (dioxane) is transformed by several monooxygenase-expressing microorganisms, but only a few of these, including Pseudonocardia dioxanivorans strain CB1190, can metabolize the compound as a sole carbon and energy source. However, nothing is yet known about the genetic basis of dioxane metabolism. In this study, we used a microarray to study differential expression of genes in strain CB1190 grown on dioxane, glycolate (a previously identified intermediate of dioxane degradation), or pyruvate.

View Article and Find Full Text PDF

Mixtures of chlorinated ethenes and ethanes are often found at contaminated sites. In this study, we undertook a systematic investigation of the inhibitory effects of 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA) on chlorinated ethene dechlorination in three distinct Dehalococcoides-containing consortia. To focus on inhibition acting directly on the reductive dehalogenases, dechlorination assays used cell-free extracts prepared from cultures actively dechlorinating trichloroethene (TCE) to ethene.

View Article and Find Full Text PDF

Pseudonocardia dioxanivorans CB1190 is the first bacterium reported to be capable of growth on the environmental contaminant 1,4-dioxane and the first member of the genus Pseudonocardia for which there is an annotated genome sequence. Preliminary analysis of the genome (chromosome and three plasmids) indicates that strain CB1190 possesses several multicomponent monooxygenases that could be involved in the aerobic degradation of 1,4-dioxane and other environmental contaminants.

View Article and Find Full Text PDF

While compound specific isotope analysis (CSIA) has been used extensively to investigate remediation of chlorinated ethenes, to date considerably less information is available on its applicability to chlorinated ethanes. In this study, biodegradation of 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA) was carried out by a Dehalobacter-containing mixed culture. Carbon isotope fractionation factors (ε) measured during whole cell degradation demonstrated that values for 1,1,1-TCA and 1,1-DCA (-1.

View Article and Find Full Text PDF

Chloroform (CF), or trichloromethane, is an ubiquitous environmental pollutant because of its widespread industrial use, historically poor disposal and recalcitrance to biodegradation. Chloroform is a potent inhibitor of metabolism and no known organism uses it as a growth substrate. We discovered that CF was rapidly and sustainably dechlorinated in the course of investigating anaerobic reductive dechlorination of 1,1,1-trichloroethane in a Dehalobacter-containing culture.

View Article and Find Full Text PDF

1,1,1-Trichloroethane (1,1,1-TCA) is a common groundwater contaminant that can be reductively dechlorinated to 1,1-dichloroethane (1,1-DCA) and monochloroethane, and can support the growth of certain dehalorespiring strains of Dehalobacter We used reductive dehalogenase cell-free extract assays (with reduced methyl viologen) and whole cell suspension dechlorination assays (with hydrogen) and a Dehalobacter-containing enrichment culture to explore the kinetics of l,1,1-TCA and 1,1-DCA reductive dechlorination in the presence of the common co-contaminants trichloroethene (TCE), cis-dichloroethene (cDCE), and vinyl chloride (VC). These chlorinated ethenes were most significant inhibitors of 1,1,1-TCA dechlorination in cell-free extracts, indicating direct effects on the reductive dehalogenase enzyme(s). The inhibition was present but less pronounced in whole cell suspension assays.

View Article and Find Full Text PDF

Dehalobacter and "Dehalococcoides" spp. were previously shown to be involved in the biotransformation of 1,1,2-trichloroethane (1,1,2-TCA) and 1,2-dichloroethane (1,2-DCA) to ethene in a mixed anaerobic enrichment culture. Here we report the further enrichment and characterization of a Dehalobacter sp.

View Article and Find Full Text PDF

Stable carbon isotope analysis of chlorinated aliphatic compounds was performed at an in situ biostimulation pilot test area (PTA) at a site where 1,2-dichloroethane (1,2-DCA) and trichloroethene (TCE) were present in groundwater. Chlorinated products of TCE reductive dechlorination (cis-dichloroethene (cDCE) and vinyl chloride (VC)) were present at concentrations of 17.5 to 126.

View Article and Find Full Text PDF

1,1,1-trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics.

View Article and Find Full Text PDF

Mixed anaerobic microbial subcultures enriched from a multilayered aquifer at a former chlorinated solvent disposal facility in West Louisiana were examined to determine the organism(s) involved in the dechlorination of the toxic compounds 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA) to ethene. Sequences phylogenetically related to Dehalobacter and Dehalococcoides, two genera of anaerobic bacteria that are known to respire with chlorinated ethenes, were detected through cloning of bacterial 16S rRNA genes. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments after starvation and subsequent reamendment of culture with 1,2-DCA showed that the Dehalobacter sp.

View Article and Find Full Text PDF