Efforts addressing sludge management, food security, and resource recovery have led to novel approaches in these areas. Electrically assisted conversion of sludge stands out as a promising technology for sewage sludge valorization, producing nitrogen and phosphorus-based fertilizers. The adoption of this technology, which could lead to a fertilizer circular economy, holds the potential to catalyze a transformative change in wastewater treatment facilities toward process intensification, innovation, and sustainability.
View Article and Find Full Text PDFUnderstanding electron transport with electroactive microbes is key to engineering effective and scalable bio-electrochemical technologies. Much of this electron transfer occurs through small-molecule flavin mediators that perform one-electron transfers in abiotic systems but concerted two-electron transfer in biological systems, rendering abiotic systems less efficient. To boost efficiency, the principles guiding flavin electron transfer must be elucidated, necessitating a tunable system.
View Article and Find Full Text PDFElectroactive microbes that can release or take up electrons are essential components of nearly every ecological niche and are powerful tools for the development of alternative energy technologies. Small-molecule mediators are critical for this electron transfer but remain difficult to study and engineer because they perform concerted two-electron transfer in native systems but only individual, one-electron transfers in electrochemical studies. Here, we report that electrode modification with ion- and electron-conductive polymers yields biosimilar, concerted two-electron transfer from via flavin mediators.
View Article and Find Full Text PDFProtein structure plays an essential role on their stability, functionality, and catalytic activity. In this work, the interplay between the β-sheet structure and its catalytic implications to the design of enzyme-inspired materials is investigated. Here, inspiration is drawn from the active sites and β-sheet rich structure of the highly efficient multicopper oxidase (MCO) to engineer a bio-inspired electrocatalyst for water oxidation utilizing the abundant metal, copper.
View Article and Find Full Text PDFAs more is learned about the benefits of microbes, their potential to prevent and treat disease is expanding. Microbial therapeutics are less burdensome and costly to produce than traditional molecular drugs, often with superior efficacy. Yet, as with most medicines, controlled dosing and delivery to the area of need remain key challenges for microbes.
View Article and Find Full Text PDFNucleic acids in blood are early indicators of disease that could be detected by point-of-care biosensors if sufficiently sensitive and facile sensors existed. Electrochemical hybridization assays are sensitive and specific but are limited to very short nucleic acids. We have developed a restriction enzyme-assisted electrochemical hybridization (REH) assay for improved nucleic acid detection.
View Article and Find Full Text PDFSurface charge is a critical feature of microbes that affects their interactions with other cells and their environment. Because bacterial surface charge is difficult to measure directly, it is typically indirectly inferred through zeta potential measurements. Existing tools to perform such characterization are either costly and ill-suited for non-spherical samples or rely on microfluidic techniques requiring expensive fabrication equipment or specialized facilities.
View Article and Find Full Text PDFChemical fertilizers have been crucial for sustaining the current global population by supplementing overused farmland to support consistent food production, but their use is unsustainable. is a nitrogen-fixing bacterium that could be used as a fertilizer replacement, but this microbe is delicate. It is sensitive to stressors, such as freeze-drying and high temperatures.
View Article and Find Full Text PDFModification of electrodes with biomolecules is an essential first step for the development of bioelectrochemical systems, which are used in a variety of applications ranging from sensors to fuel cells. Gold is often used because of its ease of modification with thiolated biomolecules, but carbon screen-printed electrodes (SPEs) are gaining popularity due to their low cost and fabrication from abundant resources. However, their effective modification with biomolecules remains a challenge; the majority of work to-date relies on nonspecific adhesion or broad amide bond formation to chemical handles on the electrode surface.
View Article and Find Full Text PDFGold electrodes are some of the most prevalent electrochemical biosensor substrate materials because they are readily functionalized with thiolated biomolecules. Yet, conventional methods to fabricate gold electrodes are costly and require onerous equipment, precluding them from implementation in low-resource settings (LRS). Recently, a number of alternative gold electrode fabrication methods have been developed to simplify and lower the cost of manufacturing.
View Article and Find Full Text PDFMonooxygenases, an important class of enzymes, have been the subject of enzyme engineering due to their high activity and versatile substrate scope. Reactions performed by these biocatalysts have long been monitored by a colorimetric method involving the coupling of a dye precursor to naphthalene hydroxylation products generated by the enzyme. Despite the popularity of this method, we found the dye product to be unstable, preventing quantitative readout.
View Article and Find Full Text PDFThe field of infectious disease diagnostics is burdened by inequality in access to healthcare resources. In particular, "point-of-care" (POC) diagnostics that can be utilized in non-laboratory, sub-optimal environments are appealing for disease control with limited resources. Electrochemical biosensors, which combine biorecognition elements with electrochemical readout to enable sensitive and specific sensing using inexpensive, simple equipment, are a major area of research for the development of POC diagnostics.
View Article and Find Full Text PDFare important probiotic microbes currently formulated for delivery as spores, but their ability to germinate in the gut remains debatable. To optimize their application, cells should be delivered in their vegetative state, but the sensitivity of prevents this. Through the application of self-assembled metal-phenolic network (MPN) cellular coatings, are protected from lyophilization stresses.
View Article and Find Full Text PDFPolyphenols are naturally derived organic compounds that have long been used as food additives, antioxidants, and adhesives owing to their intrinsic physicochemical properties. Recently, there has been growing interest in the fabrication of coordination networks based on the self-assembly of polyphenols and metal ions, termed metal-phenolic networks (MPNs), for multiple biological applications including bioimaging, drug delivery, and cell encapsulation. The as-synthesized MPN complexes feature pH responsiveness, controllable size and rigidity, and tunable permeability based on the choice of polyphenol-metal ion pairs.
View Article and Find Full Text PDFElectrochemical biosensors are promising technologies for detection and monitoring in low-resource settings due to their potential for easy use and low-cost instrumentation. Disposable gold screen-printed electrodes (SPEs) are popular substrates for these biosensors, but necessary dopants in the ink used for their production can interfere with biosensor function and contribute to the heterogeneity of these electrodes. We recently reported an alternative disposable gold electrode made from gold leaf generated using low-cost, equipment-free fabrication.
View Article and Find Full Text PDFElectrochemical sensors to measure biomarkers from complex samples are a tried and tested technology with large untapped potential for addressing important public health needs.
View Article and Find Full Text PDFTherapeutic monitoring of neurotransmitters (NTs) and psychiatric medications is essential for the diagnosis and treatment of mental illness. However, in-vivo monitoring of NTs in humans as well as continuous physiological monitoring of psychiatrics have yet to be realized. In pursuit of this goal, there has been a plethora of work to develop electrochemical sensors for both in-vivo NT monitoring as well as in-vitro detection of psychiatric medications.
View Article and Find Full Text PDFThe gut microbiome is essential to maintain overall health and prevent disease, which can occur when these microbes are not in homeostasis. Microbial biotherapeutics are important to combat these issues, but they must be alive at the time of delivery for efficacy. Many potentially therapeutic species are anaerobes and thus are difficult to manufacture because of the limited efficacy of existing protective methods, making their production nearly impossible.
View Article and Find Full Text PDFOrganophosphate (OP) pesticides cause hundreds of illnesses and deaths annually. Unfortunately, exposures are often detected by monitoring degradation products in blood and urine, with few effective methods for detection and remediation at the point of dispersal. We have developed an innovative strategy to remediate these compounds: an engineered microbial technology for the targeted detection and destruction of OP pesticides.
View Article and Find Full Text PDFDisease prevalence is highest in low-resource settings (LRS) due to the lack of funds, infrastructure, and personnel required to carry out laboratory-based molecular tests. In high-resource settings, gold-standard molecular tests for diseases consist of nucleic acid amplification tests (NAATs) due to their excellent sensitivity and specificity. These tests require the extraction, amplification, and detection of nucleic acids from clinical samples.
View Article and Find Full Text PDFThe ongoing SARS-CoV-2 pandemic has emphasized the importance of technologies to rapidly detect emerging pathogens and understand their interactions with hosts. Platforms based on the combination of biological recognition and electrochemical signal transduction, generally termed bioelectrochemical platforms, offer unique opportunities to both sense and study pathogens. Improved bio-based materials have enabled enhanced control over the biotic-abiotic interface in these systems.
View Article and Find Full Text PDFOver the past 25 years, collective evidence has demonstrated that the DNA base-pair stack serves as a medium for charge transport chemistry in solution and on DNA-modified gold surfaces. Since this charge transport depends sensitively upon the integrity of the DNA base pair stack, perturbations in base stacking, as may occur with DNA base mismatches, lesions, and protein binding, interrupt DNA charge transport (DNA CT). This sensitivity has led to the development of powerful DNA electrochemical sensors.
View Article and Find Full Text PDFSexually transmitted infections, including the human immunodeficiency virus (HIV) and the human papillomavirus (HPV), disproportionally impact those in low-resource settings. Early diagnosis is essential for managing HIV. Similarly, HPV causes nearly all cases of cervical cancer, the majority (90%) of which occur in low-resource settings.
View Article and Find Full Text PDF