A method of parity-time- (PT) symmetry analysis is introduced to study the high-dimensional, complicated parameter space of drift-wave instabilities. We show that spontaneous PT-symmetry breaking leads to the ion temperature gradient instability of drift waves, and the collisional instability is the result of explicit PT-symmetry breaking. A new unstable drift wave induced by finite collisionality is identified.
View Article and Find Full Text PDFThe single-scattering properties of ice particles in the near- through far-infrared spectral region are computed from a composite method that is based on a combination of the finite-difference time-domain technique, the T-matrix method, an improved geometrical-optics method, and Lorenz-Mie theory. Seven nonspherical ice crystal habits (aggregates, hexagonal solid and hollow columns, hexagonal plates, bullet rosettes, spheroids, and droxtals) are considered. A database of the single-scattering properties for each of these ice particles has been developed at 49 wavelengths between 3 and 100 microm and for particle sizes ranging from 2 to 10,000 microm specified in terms of the particle maximum dimension.
View Article and Find Full Text PDF