Publications by authors named "Ariel F Perez Mellor"

Carbamate is an emerging class of a polymer backbone for constructing sequence-defined, abiotic polymers. It is expected that new functional materials can be designed by controlling the primary polycarbamate sequence. While amino acids have been actively studied as building blocks for protein folding and peptide self-assembly, carbamates have not been widely investigated from this perspective.

View Article and Find Full Text PDF

The hydrogen-bonded complexes between 2-naphthol (or β-naphthol) and anisole are explored by detecting their IR absorption in the OH stretching range as well as their UV absorption by means of laser-induced fluorescence and resonance-enhanced two-photon UV ionisation. For the more stable and the metastable conformations of the OH group in 2-naphthol, hydrogen bonding to the oxygen atom of anisole is consistently detected in different supersonic jet expansions. Alternative hydrogen bonding to the aromatic ring of anisole remains elusive, although the majority of state-of-the-art hybrid DFT functionals with London dispersion correction and - less surprisingly - MP2 wavefunction theory predict it to be slightly more stable at zero-point level, unless three-body dispersion correction is added to the B3LYP-D3(BJ) approach.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) such as hydrogen peroxide (HO) and the hydroxyl radical (OH) have specific functions in biological processes, while their uncontrolled production and reactivity are known to be determining factors in pathophysiology. Methionine (Met) residues act as endogenous antioxidants, when they are oxidized into methionine sulfoxide (MetSO), thus depleting ROS and protecting the protein. We employed tandem mass spectrometry combined with IR multiple photon dissociation spectroscopy to study the oxidation induced by OH radicals produced by γ radiolysis on model cyclic dipeptides c(LMetLMet), c(LMetDMet), and c(GlyMet).

View Article and Find Full Text PDF

The effects of a finite temperature on the equilibrium structures of hydrocarbon molecules are computationally explored as a function of size and relative chemical composition in hydrogen and carbon. Using parallel tempering Monte Carlo simulations employing a reactive force field, we find that in addition to the phases already known for pure carbon, namely, cages, flakes, rings, and branched structures, strong changes due to temperature and the addition of little amounts of hydrogen are reported. Both entropy and the addition of moderate amounts of hydrogen favor planar structures such as nanoribbons over fullerenes.

View Article and Find Full Text PDF

Spatial resolution of stimulated emission depletion (STED) microscopy varies with sample labeling techniques and microscope components, e.g., lasers, lenses, and photodetectors.

View Article and Find Full Text PDF

In this paper, we report how graph theory can be used to analyze an ensemble of independent molecular trajectories, which can react during the simulation time-length, and obtain structural and kinetic information. This method is totally general and here is applied to the prototypical case of gas phase fragmentation of protonated cyclo-di-glycine. This methodology allows us to analyze the whole set of trajectories in an automatic computer-based way without the need of visual inspection but by getting all the needed information.

View Article and Find Full Text PDF