Publications by authors named "Ariel Epstein"

We introduce a paradigm for accurate design of metasurfaces for intricate beam manipulation, implementing functionalities previously considered impossible to achieve with passive lossless elements. The key concept involves self-generation of auxiliary evanescent fields which facilitate the required local power conservation, without interfering with the device performance in the far field. We demonstrate our scheme by presenting exact reactive solutions to the challenging problems of reflectionless beam splitting and perfect reflection, verified via full wave simulations.

View Article and Find Full Text PDF

One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents.

View Article and Find Full Text PDF

Bounded geometries introduce a fundamental problem in calculating the image force barrier lowering of metal-wrapped semiconductor systems. In bounded geometries, the derivation of the barrier lowering requires calculating the reference energy of the system, when the charge is at the geometry center. In the following, we formulate and rigorously solve this problem; this allows combining the image force electrostatic potential with the band diagram of the bounded geometry.

View Article and Find Full Text PDF

We present an analytical model for the optical emission of a two-dimensional source in a flexible organic light-emitting diode formation with arbitrary curvature. The formulation rigorously produces closed-form analytical expressions which clearly relate the emission pattern and the device configuration, in particular, the radius of curvature. We investigate the optical properties of a prototype model through the resultant expressions, revealing that the bending induces a dramatic enhancement of emission to large angles, allowing for large viewing angle and reduced total internal reflection losses.

View Article and Find Full Text PDF

We present an analytical method for extracting the recombination zone location from emission patterns produced by organic LEDs (OLEDs). The method is based on derivation of the closed-form expressions for OLED-radiated power developed in previous work and formulation of the analytical relations between the emitter position and the pattern extrema. The results are confirmed to be in good agreement with reported optical measurements.

View Article and Find Full Text PDF