Publications by authors named "Ariel Cariaga-Martinez"

Multiple myeloma is a complex and challenging type of blood cancer that affects plasma cells in the bone marrow. In recent years, the development of advanced research techniques, such as omics approaches-which involve studying large sets of biological data like genes and proteins-and high-throughput sequencing technologies, has allowed researchers to analyze vast amounts of genetic information rapidly and gain new insights into the disease. Additionally, the advent of artificial intelligence tools has accelerated data analysis, enabling more accurate predictions and improved treatment strategies.

View Article and Find Full Text PDF

Development is a well-defined stage-to-stage process that allows the coordination and maintenance of the structure and function of cells and their progenitors, in a complete organism embedded in an environment that, in turn, will shape cellular responses to external stimuli. Epigenetic mechanisms comprise a group of process that regulate genetic expression without changing the DNA sequence, and they contribute to the necessary plasticity of individuals to face a constantly changing medium. These mechanisms act in conjunction with genetic pools and their correct interactions will be crucial to zygote formation, embryo development, and brain tissue organization.

View Article and Find Full Text PDF

Schizophrenia is a complex mental disorder whose causes are still far from being known. Although researchers have focused on genetic or environmental contributions to the disease, we still lack a scientific framework that joins molecular and clinical findings. Epigenetic can explain how environmental variables may affect gene expression without modifying the DNA sequence.

View Article and Find Full Text PDF

Alterations in phosphatidylinositol 3-kinase (PI3K) and in PTEN (phosphatase and tensin homolog), the negative regulator of the PI3K pathway, are found in nearly half of human tumors. As PI3Kβ, the main isoform activated in PTEN-mutant tumors, has kinase-dependent and -independent activities, we compared the effects of depleting vs. drug-inhibiting PI3Kβ kinase activity in a collection of diverse tumor types and in a set of bladder carcinoma cell lines grown as xenografts in mice.

View Article and Find Full Text PDF

Oncogenic mutations in the PI3K/AKT pathway are present in nearly half of human tumors. Nonetheless, inhibitory compounds of the pathway often induce pathway rebound and tumor resistance. We find that lung squamous cell carcinoma (SQCC), which accounts for ~20% of lung cancer, exhibits increased expression of the PI3K subunit PIK3R2, which is at low expression levels in normal tissues.

View Article and Find Full Text PDF

Attempts to discover genes that are involved in the pathogenesis of major psychiatric disorders have been frustrating and often fruitless. Concern is building about the need to understand the complex ways in which nature and nurture interact to produce mental illness. We analyze the epigenome in several brain regions from schizophrenic patients with severe cognitive impairment using high-resolution (450K) DNA methylation array.

View Article and Find Full Text PDF

Schizophrenia is a complex psychiatric disorder characterized by the presence of positive, negative, and cognitive symptoms that lacks a unifying neuropathology. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including genetic and epigenetic studies. In relation to the latter, basic research suggests that normal cognition is regulated by epigenetic mechanisms and its dysfunction occurs upon epigenetic misregulation, providing new insights into missing heritability of complex psychiatric diseases, referring to the discrepancy between epidemiological heritability and the proportion of phenotypic variation explained by DNA sequence difference.

View Article and Find Full Text PDF

The acquisition of invasiveness is characteristic of tumor progression. Numerous genetic changes are associated with metastasis, but the mechanism by which a cell becomes invasive remains unclear. Expression of p85β, a regulatory subunit of phosphoinositide-3-kinase, markedly increases in advanced carcinoma, but its mode of action is unknown.

View Article and Find Full Text PDF

AKT isoforms are expressed in prostate cancer and their expression and localization have different associations with clinical characteristics. However, the distinct roles of the AKT isoforms in prostate cancer cells are largely unknown. In the present study, we demonstrate distinct roles for AKT1 and AKT2 in cell growth and migration.

View Article and Find Full Text PDF

An increased neuroendocrine (NE) cell population in prostate cancer is associated with more aggressive disease and recurrence after androgen-deprivation therapy, although the mechanism responsible is unknown. In this study, we report that the treatment of LNCaP cells with epidermal growth factor (EGF) in the presence of LY294002, an inhibitor of the phosphoinositol 3'-kinase (PI3K)-AKT pathway, induced an increase of levels and activity of ErbB2. Under these conditions, we also observed cell survival and NE differentiation.

View Article and Find Full Text PDF

Prostate proliferation is dependent of androgens and many peptide hormones. Recent reports suggest that SSTR2 and SHP-1 were two fundamental components on antiproliferative effect of somatostatin. Many studies on SHP-1 revealed that the expression of this protein was diminished or abolished in several of the cancer cell lines and tissues examined.

View Article and Find Full Text PDF