Insecticide resistance is considered a barrier to chemical control of Triatoma infestans, the main vector of Chagas disease in the Southern Cone of South America. Although initiatives to reduce the incidence of the disease in the region have integrated different strategies, they have mainly relied on vector elimination using pyrethroid insecticides such as deltamethrin. Reports of pyrethroid resistance in connection with T.
View Article and Find Full Text PDFThis study evaluates the pediculicidal activity of nanoformulations containing different binary essential oil component mixtures (eugenol:linalool, 1,8 -cineole:linalool, and eugenol:thymol) using immersion bioassays. These have allowed us to evaluate the knockdown time affecting 50% of the individuals (KT). In addition, the type of interaction between the components in each mixture was established in terms of the combination index (IC).
View Article and Find Full Text PDFThe cosmopolitan ectoparasite human head louse, Pediculus humanus capitis (De Geer)(Phthiraptera:Pediculidae), affects mostly school-aged children, with infestations reported every year mainly due to louse resistance to pyrethroids. One of the main resistance mechanisms of pyrethroids is the target site insensitivity (kdr), which is caused by single-nucleotide point mutations (SNPs) located in the voltage-sensitive sodium channel gene. In this study, we analyzed individual head lice toxicologically via the description of their susceptibility profile to permethrin and genetically through the genotypification of their kdr alleles as well as nuclear microsatellite loci.
View Article and Find Full Text PDFThe human louse, Pediculus humanus, is an obligate blood-sucking ectoparasite that has coevolved with humans for millennia. Given the intimate relationship between this parasite and the human host, the study of human lice has the potential to shed light on aspects of human evolution that are difficult to interpret using other biological evidence. In this study, we analyzed the genetic variation in 274 human lice from 25 geographic sites around the world by using nuclear microsatellite loci and female-inherited mitochondrial DNA sequences.
View Article and Find Full Text PDFSeveral studies have documented the presence of a known multi-drug-resistant pathogen, in the human head louse, Since no reports from countries in Latin America have been published, the aim of the present study was to determine whether was present in head lice specimens collected in this geographic region. Head lice specimens from Argentina, Colombia, and Honduras were analyzed. PCR assays were performed to confirm the specimens' species and to investigate whether the DNA of was present.
View Article and Find Full Text PDFPurpose Of Review: Houseflies, L., are an important sanitary pest that affects human and domesticated animals. They are mechanical carriers of more than 100 human and animal diseases including protozoan, bacterial, helminthic, and viral infections.
View Article and Find Full Text PDFKnockdown resistance (kdr) is a common mechanism of insecticide resistance in head lice to the conventionally used pyrethroid pediculosis and can be the result of various amino acid substitutions within the voltage-sensitive sodium channel (VSSC). In this study, 54 sequences from varied specimens were investigated to monitor well-known resistance mutations and probable new mutations. The Pediculus humanus capitis de Geer specimens were collected from 13 provinces in Iran.
View Article and Find Full Text PDFPediculosis is a worldwide disease affecting school-aged children produced by the presence of the head louse, Pediculus humanus capitis De Geer, an obligate ectoparasite on the human scalp feeding exclusively on blood. Transmission occurs primarily through direct physical head-to-head contact. In March 2020, the World Health Organization (WHO) declared the COVID-19 outbreak as a pandemic.
View Article and Find Full Text PDFHead louse infestations continue to be a concern of public health in most countries, including the most developed ones. The present recommendations are intended to inform and stress the role and impact of the different authorities, institutions, industry, and the public in the control of head lice in order to reduce the prevalence of this parasite. We encourage health authorities to pursue more effective methods to correctly identify such infestations, and evaluate existing and new pediculicides, medical devices, louse repellents, and louse- and nit-removal remedies.
View Article and Find Full Text PDFThe genetic structure of natural populations offers insight into the complexities of their dynamics, information that can be relevant to vector control strategies. Microsatellites are useful neutral markers to investigate the genetic structure and gene flow in Triatoma infestans, one of the main vectors of Chagas disease in South America. Recently, a heterogeneous pyrethroid-resistant hotspot was found in the Argentine Gran Chaco, characterized by the highest levels of deltamethrin resistance found at the present time.
View Article and Find Full Text PDFBackground: The human head louse, Pediculus humanus capitis, is a cosmopolitan blood-sucking ectoparasite affecting mostly schoolchildren in both developed and developing countries. In Honduras, chemical pediculicides are the first line of treatment, with permethrin as their main active ingredient. Despite the extended use of these products, there is currently no research investigating insecticide resistance in Honduran head lice.
View Article and Find Full Text PDFJ Med Entomol
May 2020
Chagas disease affects around 6 million people in the world, and in Latin America, it is mainly transmitted by the kissing bug. Chemical control of the vector with pyrethroid insecticides has been the most frequently used tool to reduce the disease incidence. Failures of field control have been detected in areas of the Argentinian Gran Chaco that correlate with high levels of insecticide resistance.
View Article and Find Full Text PDFThe infestation with the human ectoparasite, Pediculus humanus capitis (De Geer), is a common public health problem affecting schoolchildren worldwide. In Chile, the main active ingredients present in the over-the-counter pediculicides contain pyrethroids. Despite the extended use of these products, there is no evidence of the insecticide resistance status of the head lice geographically located in Chile.
View Article and Find Full Text PDFInsect antennae are sophisticated sensory organs, usually covered with sensory structures responsible for the detection of relevant signals of different modalities coming from the environment. Despite the relevance of the head louse as a human parasite, the role of its antennal sensory system in the highly dependent relation established with their hosts has been barely studied. In this work, we present a functional description of the antennae of these hematophagous insects by applying different approaches, including scanning electron microscopy (SEM), anterograde antennal fluorescent backfills, and behavioral experiments with intact or differentially antennectomized lice.
View Article and Find Full Text PDFHead lice infest millions of school-age children every year, both in developed and developing countries. However, little is known about the number of lice transferred among children during school activities, because direct methods to study this are almost impossible to implement. This issue has been addressed following an indirect method, which consist in collecting data of real infestation from several children groups and using a mathematical model of lice colonies to infer how the infestation observed might have evolved.
View Article and Find Full Text PDFThe use of pyrethroids to control the human head louse, Pediculus humanus capitis De Geer (Anoplura: Pediculidae), has suffered considerable loss of efficacy due to the evolution of resistance. Thus, the development of efficiently insecticide delivery systems is imperative for the control of head lice. We studied the insecticidal activity of ivermectin-loaded lipid nanocapsules (IVM-LNC) against permethrin-resistant head lice from Argentina.
View Article and Find Full Text PDFBackground: Essential oil components (EOCs) are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control.
View Article and Find Full Text PDFThe genus Pediculus L. that parasitize humans comprise two subspecies: the head lice Pediculus humanus capitis De Geer and the body lice Pediculus humanus humanus De Geer. Despite the 200 yr of the first description of these two species, there is still a long debate about their taxonomic status.
View Article and Find Full Text PDFThe prevention of Chagas disease is based primarily on the chemical control of Triatoma infestans (Klug) using pyrethroid insecticides. However, high resistance levels, correlated with control failures, have been detected in Argentina and Bolivia. A previous study at our laboratory found that imidacloprid could serve as an alternative to pyrethroid insecticides.
View Article and Find Full Text PDFHead lice lay eggs in human head hairs in order to reproduce. There is a difficulty associated to the process of detaching these eggs: they are tightly gripped to the hair by a secretion produced by female head lice. The physical removal of eggs has become an important part of treatment of louse infestations.
View Article and Find Full Text PDFThe human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), is an obligate ectoparasite that causes pediculosis capitis and has parasitized humans since the beginning of humankind. Head louse infestations are widespread throughout the world and have been increasing since the early 1990s partially because of ineffective pediculicides. In Argentina, the overuse of products containing pyrethroids has led to the development of resistant louse populations.
View Article and Find Full Text PDFAm J Phys Anthropol
September 2013
Anthropological studies suggest that the genetic makeup of human populations in the Americas is the result of diverse processes including the initial colonization of the continent by the first people plus post-1492 European migrations. Because of the recent nature of some of these events, understanding the geographical origin of American human diversity is challenging. However, human parasites have faster evolutionary rates and larger population sizes allowing them to maintain greater levels of genetic diversity than their hosts.
View Article and Find Full Text PDFTriatoma infestans (Klug) is the main vector of Chagas disease, which is a public health concern in most Latin American countries. The prevention of Chagas disease is based on the chemical control of the vector using pyrethroid insecticides. In the last decade, different levels of deltamethrin resistance have been detected in certain areas of Argentina and Bolivia.
View Article and Find Full Text PDFThe use of pyrethroids to control head louse infestations have suffered considerable loss of efficacy due to the development of resistance. In the last past years, several new alternative products to synthetic pyrethroids have been developed and are sold in the Argentinean market against head lice. The present study investigated the efficacy of two new Argentinean products Nopucid Qubit® and Nopucid Bio Citrus® and its comparison with two reference products Nyda® and Hedrin®.
View Article and Find Full Text PDFInfestation with the head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), is one of the most common parasitic infestation of humans worldwide. Traditionally, the main treatment for control of head lice is chemical control that is based in a wide variety of neurotoxic synthetic insecticides. The repeated overuse of these products has resulted in the selection of resistant populations of head lice.
View Article and Find Full Text PDF