Proc Natl Acad Sci U S A
February 2024
Recent studies have reported the experimental discovery that nanoscale specimens of even a natural material, such as diamond, can be deformed elastically to as much as 10% tensile elastic strain at room temperature without the onset of permanent damage or fracture. Computational work combining ab initio calculations and machine learning (ML) algorithms has further demonstrated that the bandgap of diamond can be altered significantly purely by reversible elastic straining. These findings open up unprecedented possibilities for designing materials and devices with extreme physical properties and performance characteristics for a variety of technological applications.
View Article and Find Full Text PDFSolid-state spin defects, especially nuclear spins with potentially achievable long coherence times, are compelling candidates for quantum memories and sensors. However, their current performances are still limited by dephasing due to variations of their intrinsic quadrupole and hyperfine interactions. We propose an unbalanced echo to overcome this challenge by using a second spin to refocus variations of these interactions while preserving the quantum information stored in the nuclear spin free evolution.
View Article and Find Full Text PDFThe growing demands of remote detection and an increasing amount of training data make distributed machine learning under communication constraints a critical issue. This work provides a communication-efficient quantum algorithm that tackles two traditional machine learning problems, the least-square fitting and softmax regression problems, in the scenario where the dataset is distributed across two parties. Our quantum algorithm finds the model parameters with a communication complexity of O(log_{2}(N)/ε), where N is the number of data points and ε is the bound on parameter errors.
View Article and Find Full Text PDFThe initialization of nuclear spin to its ground state is challenging due to its small energy scale compared with thermal energy, even at cryogenic temperature. In this Letter, we propose an optonuclear quadrupolar effect, whereby two-color optical photons can efficiently interact with nuclear spins. Leveraging such an optical interface, we demonstrate that nuclear magnons, the collective excitations of nuclear spin ensemble, can be cooled down optically.
View Article and Find Full Text PDFWhen the classical dynamics of a particle in a finite two-dimensional billiard undergoes a transition to chaos, the quantum dynamics of the particle also shows manifestations of chaos in the form of scarring of wave functions and changes in energy level spacing distributions. If we "tile" an infinite plane with such billiards, we find that the Bloch states on the lattice undergo avoided crossings, energy level spacing statistics change from Poisson-like to Wigner-like, and energy sheets of the Brillouin zone begin to "mix" as the classical dynamics of the billiard changes from regular to chaotic behavior.
View Article and Find Full Text PDFWe study the effect of broken spatial and dynamical symmetries on the band structure of two lattices with unit cells that are soft versions of the classic Sinai billiard. We find significant signatures of chaos in the band structure of these lattices, in energy regimes where the underlying classical unit cell undergoes a transition to chaos. Broken dynamical symmetries and the presence of chaos can diminish the feasibility of changing and controlling band structure in a wide variety of two-dimensional lattice-based devices, including two-dimensional solids, optical lattices, and photonic crystals.
View Article and Find Full Text PDF