Thousands of long intergenic non-coding RNAs (lincRNAs) are transcribed throughout the vertebrate genome. A subset of lincRNAs enriched in developing brains have recently been found to contain cryptic open-reading frames and are speculated to encode micropeptides. However, systematic identification and functional assessment of these transcripts have been hindered by technical challenges caused by their small size.
View Article and Find Full Text PDFProtein coding genes were originally identified with sequence-based definitions that included a 100-codon cutoff to avoid annotating irrelevant open reading frames. However, many active proteins contain less than 100 amino acids. Indeed, functional genetics, ribosome profiling, and proteomic profiling have identified many short, translated open reading frames, including those with biologically active peptide products (microproteins).
View Article and Find Full Text PDFMessenger RNA (mRNA) stability substantially impacts steady-state gene expression levels in a cell. mRNA stability is strongly affected by codon composition in a translation-dependent manner across species, through a mechanism termed codon optimality. We have developed iCodon ( www.
View Article and Find Full Text PDFBackground: The regulation of messenger RNA (mRNA) stability has a profound impact on gene expression dynamics during embryogenesis. For example, in animals, maternally deposited mRNAs are degraded after fertilization to enable new developmental trajectories. Regulatory sequences in 3' untranslated regions (3'UTRs) have long been considered the central determinants of mRNA stability.
View Article and Find Full Text PDFmRNA translation decodes nucleotide into amino acid sequences. However, translation has also been shown to affect mRNA stability depending on codon composition in model organisms, although universality of this mechanism remains unclear. Here, using three independent approaches to measure exogenous and endogenous mRNA decay, we define which codons are associated with stable or unstable mRNAs in human cells.
View Article and Find Full Text PDFExpression of tobacco mosaic virus (TMV) coat protein (CP) restricts virus disassembly and alters the accumulation of the movement protein (MP). To characterize the role of structure of transgenic CP in regulating virus disassembly and production of MP, we generated CPs with mutations at residues Glu50 and Asp77, located in the interface between juxtaposed CP subunits. In transgenic Nicotiana tabacum and BY-2 cells, three categories of coat protein-mediated resistance (CP-MR) levels were identified: wild-type CP-MR; elevated CP-MR; and no CP-MR.
View Article and Find Full Text PDF