Plasmonic metal nanostructures with complex morphologies provide an important route to tunable optical responses and local electric field enhancement at the nanoscale for a variety of applications including sensing, imaging, and catalysis. Here we report a high-concentration synthesis of gold core-cage nanoparticles with a tethered and structurally aligned octahedral core and examine their plasmonic and catalytic properties. The obtained nanostructures exhibit a double band extinction in the visible-near infrared range and a large area electric field enhancement due to the unique structural features, as demonstrated using finite difference time domain (FDTD) simulations and confirmed experimentally using surface enhanced Raman scattering (SERS) tests.
View Article and Find Full Text PDFAn electrostatic electron source design capable of producing sub-20 femtoseconds (rms) multi-electron pulses is presented. The photoelectron gun concept builds upon geometrical electric field enhancement at the cathode surface. Particle tracer simulations indicate the generation of extremely short bunches even beyond 40 cm of propagation.
View Article and Find Full Text PDFA wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component.
View Article and Find Full Text PDFPlasma membrane lipids significantly affect assembly and activity of many signaling networks. The present work is aimed at analyzing, by molecular dynamics simulations, the structure and dynamics of the CD3 ζζ dimer in palmitoyl-oleoyl-phosphatidylcholine bilayer (POPC) and in POPC/cholesterol/sphingomyelin bilayer, which resembles the raft membrane microdomain supposed to be the site of the signal transducing machinery. Both POPC and raft-like environment produce significant alterations in structure and flexibility of the CD3 ζζ with respect to nuclear magnetic resonance (NMR) model: the dimer is more compact, its secondary structure is slightly less ordered, the arrangement of the Asp6 pair, which is important for binding to the Arg residue in the alpha chain of the T cell receptor (TCR), is stabilized by water molecules.
View Article and Find Full Text PDFNO binding to the T-state of human hemoglobin (HbA) induces the cleavage of the proximal His bonds to the heme iron in the α-chains, whereas it leaves the β-hemes hexacoordinated. The structure of the nitrosylated T-state of the W37Eβ mutant (W37E) shows that the Fe-His87α bond remains intact. Exactly how mutation affects NO binding and why tension is apparent only in HbA α-heme remains to be elucidated.
View Article and Find Full Text PDF