Publications by authors named "Ariel A Petruk"

Liquid cell electron microscopy (LCEM) has long suffered from irreproducibility and its inability to confer high-quality images over a wide field of view. LCEM demands the encapsulation of the sample between two ultrathin membranes (windows). In the vacuum environment of the electron microscope, the windows bulge, drastically reducing the achievable resolution and the usable viewing region.

View Article and Find Full Text PDF

Highly energetic ultrashort electron bunches have the potential to reveal the ultrafast structural dynamics in relatively thicker in-liquid samples. However, direct current voltages higher than 100 kV are exponentially difficult to attain as surface and vacuum breakdown become an important problem as the electric field increases. One of the most demanding components in the design of a high-energy electrostatic ultrafast electron source is the high voltage feedthrough (HVFT), which must keep the electron gun from discharging against ground.

View Article and Find Full Text PDF

Multiply charged anions (MCAs) display unique photophysics and solvent-stabilizing effects. Well-known aqueous species such as SO and PO experience spontaneous electron detachment or charge-separation fragmentation in the gas phase owing to the strong Coulomb repulsion arising from the excess of negative charge. Thus, anions often present low photodetachment thresholds and the ability to quickly eject electrons into the solvent via charge-transfer-to-solvent (CTTS) states.

View Article and Find Full Text PDF

We introduce a nanofluidic platform that can be used to carry out femtosecond electron diffraction (FED) and transmission electron microscopy (TEM) measurements in liquid samples or in-liquid specimens, respectively. The nanofluidic cell (NFC) system presented herein has been designed to withstand high sample refreshing rates (over one kilohertz), a prerequisite to succeed with FED experiments in our lab. Short beam paths, below 1 μm, in combination with ultrathin membranes (less than 100 nm thick) are necessary conditions for in-liquid FED and TEM studies due to the strongly interacting nature of electrons.

View Article and Find Full Text PDF

Plasmonic metal nanostructures with complex morphologies provide an important route to tunable optical responses and local electric field enhancement at the nanoscale for a variety of applications including sensing, imaging, and catalysis. Here we report a high-concentration synthesis of gold core-cage nanoparticles with a tethered and structurally aligned octahedral core and examine their plasmonic and catalytic properties. The obtained nanostructures exhibit a double band extinction in the visible-near infrared range and a large area electric field enhancement due to the unique structural features, as demonstrated using finite difference time domain (FDTD) simulations and confirmed experimentally using surface enhanced Raman scattering (SERS) tests.

View Article and Find Full Text PDF

Human hemoglobin (Hb) is a benchmark protein of structural biology that shaped our view of allosterism over 60 years ago, with the introduction of the MWC model based on Perutz structures of the oxy(R) and deoxy(T) states and the more recent Tertiary Two-State model that proposed the existence of individual subunit states -"r" and "t"-, whose structure is yet unknown. Cooperative oxygen binding is essential for Hb function, and despite decades of research there are still open questions related to how tertiary and quaternary changes regulate oxygen affinity. In the present work, we have determined the free energy profiles of oxygen migration and for HisE7 gate opening, with QM/MM calculations of the oxygen binding energy in order to address the influence of tertiary differences in the control of oxygen affinity.

View Article and Find Full Text PDF

An electrostatic electron source design capable of producing sub-20 femtoseconds (rms) multi-electron pulses is presented. The photoelectron gun concept builds upon geometrical electric field enhancement at the cathode surface. Particle tracer simulations indicate the generation of extremely short bunches even beyond 40 cm of propagation.

View Article and Find Full Text PDF

A combination of mass spectrometry, Raman microspectroscopy, circular dichroism and X-ray crystallography has been used to obtain detailed information on the reaction of an iridium-based CO-releasing molecule (Ir-CORM), Cs2IrCl5CO, with a model protein, bovine pancreatic ribonuclease. The results show that Ir-compound fragments bind to the N-terminal amine and close to histidine and methionine side chains, and the CO ligand is retained for a long time. The data provide helpful information for identifying protein targets for Ir-CORMs and for studying the mechanism that allows them to exhibit their interesting biological properties.

View Article and Find Full Text PDF

Motivation: Water molecules are key players for protein folding and function. On the protein surface, water is not placed randomly, but display instead a particular structure evidenced by the presence of specific water sites (WS). These WS can be derived and characterized using explicit water Molecular Dynamics simulations, providing useful information for ligand binding prediction and design.

View Article and Find Full Text PDF

A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component.

View Article and Find Full Text PDF

Carbon monoxide releasing molecules (CORMs) have important bactericidal, anti-inflammatory, neuroprotective, and antiapoptotic effects and can be used as tools for CO physiology experiments, including studies on vasodilation. In this context, a new class of CO releasing molecules, based on pentachlorocarbonyliridate(III) derivative have been recently reported. Although there is a growing interest in the characterization of protein-CORMs interactions, only limited structural information on CORM binding to protein and CO release has been available to date.

View Article and Find Full Text PDF

Many pathogenic microorganisms have evolved hemoglobin-mediated nitric oxide (NO) detoxification mechanisms, where a globin domain in conjunction with a partner reductase catalyzes the conversion of toxic NO to innocuous nitrate. The truncated hemoglobin HbN of Mycobacterium tuberculosis displays a potent NO dioxygenase activity despite lacking a reductase domain. The mechanism by which HbN recycles itself during NO dioxygenation and the reductase that participates in this process are currently unknown.

View Article and Find Full Text PDF

Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.

View Article and Find Full Text PDF

Among 20 p450s of Mycobacterium tuberculosis (Mt), CYP121 has received an outstanding interest, not only due to its essentiality for bacterial viability but also because it catalyzes an unusual carbon-carbon coupling reaction. Based on the structure of the substrate bound enzyme, several reaction mechanisms were proposed involving first Tyr radical formation, second Tyr radical formation, and C-C coupling. Key and unknown features, being the nature of the species that generate the first and second radicals, and the role played by the protein scaffold each step.

View Article and Find Full Text PDF

Plasma membrane lipids significantly affect assembly and activity of many signaling networks. The present work is aimed at analyzing, by molecular dynamics simulations, the structure and dynamics of the CD3 ζζ dimer in palmitoyl-oleoyl-phosphatidylcholine bilayer (POPC) and in POPC/cholesterol/sphingomyelin bilayer, which resembles the raft membrane microdomain supposed to be the site of the signal transducing machinery. Both POPC and raft-like environment produce significant alterations in structure and flexibility of the CD3 ζζ with respect to nuclear magnetic resonance (NMR) model: the dimer is more compact, its secondary structure is slightly less ordered, the arrangement of the Asp6 pair, which is important for binding to the Arg residue in the alpha chain of the T cell receptor (TCR), is stabilized by water molecules.

View Article and Find Full Text PDF

NO binding to the T-state of human hemoglobin (HbA) induces the cleavage of the proximal His bonds to the heme iron in the α-chains, whereas it leaves the β-hemes hexacoordinated. The structure of the nitrosylated T-state of the W37Eβ mutant (W37E) shows that the Fe-His87α bond remains intact. Exactly how mutation affects NO binding and why tension is apparent only in HbA α-heme remains to be elucidated.

View Article and Find Full Text PDF

A better understanding of the structural effects induced by thyroid hormones in model membranes is attained by Raman spectroscopy. The interactions of T3 and T4 with multilamellar vesicles of dipalmytoylphosphatidylcholine (DPPC) in the gel phase are characterized by analyzing the spectral behavior of the C-H and C-C stretching vibrations of the acyl chains. The spectra evidence an increase in the relative number of gauche conformation, which indicates the hormones are able to penetrate into the hydrophobic region of the bilayer and partially alter the lipid structure.

View Article and Find Full Text PDF

Background: Thyroxine-binding globulin (TBG) is a non-inhibitory member of the serpin family of proteins whose main structural element is the reactive center loop (RCL), that, upon cleavage by proteases, is inserted into the protein core adopting a β-strand conformation (stressed to relaxed transition, S-to-R). After S-to-R transition thyroxine (T4) affinity decreases. However, crystallographic studies in the presence or absence of the hormone in different states are unable to show significant differences in the structure and interactions of the binding site.

View Article and Find Full Text PDF

It is now clear that proteins are flexible entities that in solution switch between conformations to achieve their function. Hydrogen/Deuterium Exchange Mass Spectrometry (HX/MS) is an invaluable tool to understand dynamic changes in proteins modulated by cofactor binding, post-transductional modifications, or protein-protein interactions. ERK2MAPK, a protein involved in highly conserved signal transduction pathways of paramount importance for normal cellular function, has been extensively studied by HX/MS.

View Article and Find Full Text PDF

Recognition and complex formation between proteins and carbohydrates is a key issue in many important biological processes. Determination of the three-dimensional structure of such complexes is thus most relevant, but particularly challenging because of their usually low binding affinity. In silico docking methods have a long-standing tradition in predicting protein-ligand complexes, and allow a potentially fast exploration of a number of possible protein-carbohydrate complex structures.

View Article and Find Full Text PDF

Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O(·)) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data.

View Article and Find Full Text PDF

Since proteins are dynamic systems in living organisms, the employment of methodologies contemplating this crucial characteristic results fundamental to allow revealing several aspects of their function. In this work, we present results obtained using classical mechanical atomistic simulation tools applied to understand the connection between protein dynamics and ligand migration. Firstly, we will present a review of the different sampling schemes used in the last years to obtain both ligand migration pathways and the thermodynamic information associated with the process.

View Article and Find Full Text PDF

The structure and dynamics of thyroxine (T4), distal and proximal conformers of 3',3,5-triiodo-l-thyronine (T3d and T3p), and 3,5-diiodo-l-thyronine (T2) upon interaction with DMPC membranes were analyzed by means of molecular dynamics simulations. The locations, the more stable orientations, and the structural changes adopted by the hormones in the lipid medium evidence that the progressive iodine substitution on the beta ring lowers both the possibility of penetration and the transversal mobility in the membrane. However, the results obtained for T3d show that the number of iodine atoms in the molecule is not the only relevant factor in the hormone behavior but also the orientation of the single iodine substitution.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2rma32tsmig2f2bm59hpsns4rrkm0e4c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once