Strains of the Gram-positive, thermophilic bacterium possess elaborate systems for the utilization of hemicellulolytic polysaccharides, including xylan, arabinan, and galactan. These systems have been studied extensively in strains T-1 and T-6, representing microbial models for the utilization of soil polysaccharides, and many of their components have been characterized both biochemically and structurally. Here, we characterized routes by which utilizes mono- and disaccharides such as galactose, cellobiose, lactose, and galactosyl-glycerol.
View Article and Find Full Text PDFUnlabelled: 6-phospho-β-glucosidases and 6-phospho-β-galactosidases are enzymes that hydrolyze the β-glycosidic bond between a terminal non-reducing glucose-6-phosphate (Glc6P) or galactose-6-phosphate (Gal6P), respectively, and other organic molecules. Gan1D, a glycoside hydrolase (GH) belonging to the GH1 family, has recently been identified in a newly characterized galactan-utilization gene cluster in the bacterium Geobacillus stearothermophilus T-1. Gan1D has been shown to exhibit bifunctional activity, possessing both 6-phospho-β-galactosidase and 6-phospho-β-glucosidase activities.
View Article and Find Full Text PDFDe novo GRIN1 mutations have recently been shown to cause severe intellectual disability, hypotonia, hyperkinetic and stereotyped movements, and epilepsy. We report two new cases of severe early onset encephalopathy associated with hyperkinetic and oculogyric-like movements, caused by mutations in the GRIN1 gene; both were identified by whole exome sequencing. One of the patients harbored the novel mutation p.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
December 2014
Geobacillus stearothermophilus T6 is a thermophilic bacterium that possesses an extensive hemicellulolytic system, including over 40 specific genes that are dedicated to this purpose. For the utilization of xylan, the bacterium uses an extracellular xylanase which degrades xylan to decorated xylo-oligomers that are imported into the cell. These oligomers are hydrolyzed by side-chain-cleaving enzymes such as arabinofuranosidases, acetylesterases and a glucuronidase, and finally by an intracellular xylanase and a number of β-xylosidases.
View Article and Find Full Text PDFGeobacillus stearothermophilus T-6 produces a single extracellular xylanase (Xyn10A) capable of producing short, decorated xylo-oligosaccharides from the naturally branched polysaccharide, xylan. Gel retardation assays indicated that the master negative regulator, XylR, binds specifically to xylR operators in the promoters of xylose and xylan-utilization genes. This binding is efficiently prevented in vitro by xylose, the most likely molecular inducer.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
February 2014
Geobacillus stearothermophilus T1 is a Gram-positive thermophilic soil bacterium that contains an extensive system for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. The bacterium uses a number of extracellular enzymes that break down the high-molecular-weight polysaccharides into short oligosaccharides, which enter the cell and are further hydrolyzed into sugar monomers by dedicated intracellular glycoside hydrolases. The interest in the biochemical characterization and structural analysis of these proteins originates mainly from the wide range of their potential biotechnological applications.
View Article and Find Full Text PDF