Transition metal sulfides have become famous in high energy density supercapacitor materials owing to their rich redox and high conductivity. While their development has achieved a breakthrough in terms of capacitance, there is little knowledge from the theoretical perspective on how dopants play a role in enhancing their capacitances. In this work, pseudocapacitance and quantum capacitance were evaluated through first-principles calculation to describe their role in transition metal sulfide, which here is represented by copper sulfide (CuS).
View Article and Find Full Text PDFOver the past decade, smart and functional biomaterials have escalated as one of the most rapidly emerging fields in the life sciences because the performance of biomaterials could be improved by careful consideration of their interaction and response with the living systems. Thus, chitosan could play a crucial role in this frontier field because it possesses many beneficial properties, especially in the biomedical field such as excellent biodegradability, hemostatic properties, antibacterial activity, antioxidant properties, biocompatibility, and low toxicity. Furthermore, chitosan is a smart and versatile biopolymer due to its polycationic nature with reactive functional groups that allow the polymer to form many interesting structures or to be modified in various ways to suit the targeted applications.
View Article and Find Full Text PDFOrganic pollutants, such as synthetic dyes, are treated to prevent them from contaminating natural water sources. One of the treatment methods is advanced oxidation process using a photocatalyst material as the active agent. However, many photocatalysts are hindered by their production cost and efficiency.
View Article and Find Full Text PDFThe practice of combining external stimulation therapy alongside stimuli-responsive bio-scaffolds has shown massive potential for tissue engineering applications. One promising example is the combination of electrical stimulation (ES) and electroactive scaffolds because ES could enhance cell adhesion and proliferation as well as modulating cellular specialization. Even though electroactive scaffolds have the potential to revolutionize the field of tissue engineering due to their ability to distribute ES directly to the target tissues, the development of effective electroactive scaffolds with specific properties remains a major issue in their practical uses.
View Article and Find Full Text PDFThe accumulation of pollutants in water is dangerous for the environment and human lives. Some of them are considered as persistent organic pollutants (POPs) that cannot be eliminated from wastewater effluent. Thus, many researchers have devoted their efforts to improving the existing technology or providing an alternative strategy to solve this environmental problem.
View Article and Find Full Text PDFElectroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance.
View Article and Find Full Text PDFThe primary Waste Heat Boiler (WHB) in an ammonia plant experienced cap leaking and the outer tube rupture after ten months since the last repair and replacement (total retubing). The leaking cap and the outer tube materials are low carbon steel SA-204 Gr. B and SA-209 Gr.
View Article and Find Full Text PDFZinc oxide (ZnO) has been considered as one of the potential materials in solar cell applications, owing to its relatively high conductivity, electron mobility, stability against photo-corrosion and availability at low-cost. Different structures of ZnO materials have been engineered at the nanoscale, and then applied on the conducting substrate as a photoanode. On the other hand, the ZnO nanomaterials directly grown on the substrate have been attractive due to their unique electron pathways, which suppress the influence of surface states typically found in the former case.
View Article and Find Full Text PDFElectrostimulation and electroactive scaffolds can positively influence and guide cellular behaviour and thus has been garnering interest as a key tissue engineering strategy. The development of conducting polymers such as polyaniline enables the fabrication of conductive polymeric composite scaffolds. In this study, we report on the initial development of a polycaprolactone scaffold incorporating different weight loadings of a polyaniline microparticle filler.
View Article and Find Full Text PDF