It is hypothesized that different ligand-induced conformational changes can explain the different interactions of nuclear receptors with regulatory proteins, resulting in specific biological activities. Understanding the mechanism of how ligands regulate cofactor interaction facilitates drug design. To investigate these ligand-induced conformational changes at the surface of proteins, we performed a time-resolved fluorescence resonance energy transfer assay with 52 different cofactor peptides measuring the ligand-induced cofactor recruitment to the retinoid X receptor-alpha (RXRalpha) in the presence of 11 compounds.
View Article and Find Full Text PDFDespite intense research over the last 10 years, aided by the availability of X-ray structures of enzyme-inhibitor complexes, only very few truly orally active thrombin inhibitors have been found. We conducted a comprehensive study starting with peptide transition state analogues (TSA). Both hydrophobic nonpeptide analogues as well as hydrophilic peptidic analogues were synthesized.
View Article and Find Full Text PDF