Publications by authors named "Arie Kaffman"

Childhood neglect is associated with cortical thinning, hyperactivity, and deficits in cognitive flexibility that are difficult to reverse later in life. Despite being the most prevalent form of early adversity, little is currently understood about the mechanisms responsible for these neurodevelopmental abnormalities, and no animal models have yet replicated key structural and behavioral features of childhood neglect/deprivation. To address these gaps, we have recently demonstrated that mice exposed to impoverished conditions, specifically limited bedding (LB), exhibit behavioral and structural changes that resemble those observed in adolescents who have experienced severe neglect.

View Article and Find Full Text PDF

Early life adversity (ELA) is a heterogeneous group of negative childhood experiences that can lead to abnormal brain development and more severe psychiatric, neurological, and medical conditions in adulthood. According to the immune hypothesis, ELA leads to an abnormal immune response characterized by high levels of inflammatory cytokines. This abnormal immune response contributes to more severe negative health outcomes and a refractory response to treatment in individuals with a history of ELA.

View Article and Find Full Text PDF

Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early-life adversity (ELA), with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of ELA, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower.

View Article and Find Full Text PDF

Background: Early life adversity impairs hippocampal development and function across diverse species. While initial evidence indicated potential variations between males and females, further research is required to validate these observations and better understand the underlying mechanisms contributing to these sex differences. Furthermore, most of the preclinical work in rodents was performed in adult males, with only few studies examining sex differences during adolescence when such differences appear more pronounced.

View Article and Find Full Text PDF
Article Synopsis
  • Abnormal development and function of the hippocampus are observed in rodent models exposed to early life adversity, with males showing more severe effects than females.
  • Male adolescents exposed to limited bedding exhibit deficits in fear conditioning and disrupted synaptic connectivity linked to impaired microglial pruning during crucial developmental weeks.
  • Microglial activity was crucial, as their temporary removal caused similar deficits in normally developing males, while activation restored conditions in affected LB males, suggesting glial cells play a key role in sex-specific brain adaptations to early adversity.
View Article and Find Full Text PDF

Early adversity can change educational, cognitive, and mental health outcomes. However, the neural processes through which early adversity exerts these effects remain largely unknown. We used generative network modeling of the mouse connectome to test whether unpredictable postnatal stress shifts the constraints that govern the organization of the structural connectome.

View Article and Find Full Text PDF

Early life adversity impairs normal hippocampal function and connectivity in various mammalian species, including humans and rodents. According to the 'cumulative model' the number of early adversities can be summed up to determine the risk for developing psychopathology later in life. In contrast, the 'dimensional model' argues that 'Deprivation' and 'Threat' impact different developmental processes that should not be added in determining clinical outcomes.

View Article and Find Full Text PDF

Translational work in rodents elucidates basic mechanisms that drive complex behaviors relevant to psychiatric and neurological conditions. Nonetheless, numerous promising studies in rodents later fail in clinical trials, highlighting the need for improving the translational utility of preclinical studies in rodents. Imaging of small rodents provides an important strategy to address this challenge, as it enables a whole-brain unbiased search for structural and dynamic changes that can be directly compared to human imaging.

View Article and Find Full Text PDF

Early adversity () impairs myelin development in a manner that persists later in life across diverse mammalian species including humans, non-human primates, and rodents. These observations, coupled with the highly conserved nature of myelin development suggest that animal models can provide important insights into the molecular mechanisms by which EA impairs myelin development later in life and the impact of these changes on network connectivity, cognition, and behavior. However, this area of translational research has received relatively little attention and no comprehensive review is currently available to address these issues.

View Article and Find Full Text PDF

Exposure to early life stress (ELS) causes abnormal hippocampal development and functional deficits in rodents and humans, but no meta-analysis has been used yet to quantify the effects of different rodent models of ELS on hippocampal-dependent memory. We searched PubMed and Web of Science for publications that assessed the effects of handling, maternal separation (MS), and limited bedding and nesting (LBN) on performance in the Morris water maze (MWM), novel object recognition (NOR), and contextual fear conditioning (CFC). Forty-five studies met inclusion criteria (n = 451-763 rodents per test) and were used to calculate standardized mean differences (Hedge's g) and to assess heterogeneity, publication bias, and the moderating effects of sex and species (rats vs.

View Article and Find Full Text PDF

Large number of promising preclinical psychiatric studies in rodents later fail in clinical trials, raising concerns about the efficacy of this approach to generate novel pharmacological interventions. In this mini-review we argue that over-reliance on behavioral tests that are brief and highly sensitive to external factors play a critical role in this failure and propose that automated home-cage monitoring offers several advantages that will increase the translational utility of preclinical psychiatric research in rodents. We describe three of the most commonly used approaches for automated home cage monitoring in rodents [e.

View Article and Find Full Text PDF

It is currently unclear whether early life stress (ELS) affects males and females differently. However, a growing body of work has shown that sex moderates responses to stress and injury, with important insights into sex-specific mechanisms provided by work in rodents. Unfortunately, most of the ELS studies in rodents were conducted only in males, a bias that is particularly notable in translational work that has used human imaging.

View Article and Find Full Text PDF

The mechanisms by which childhood maltreatment increases anxiety is unclear, but a propensity for increased defensive behavior in rodent models of early life stress (ELS) suggests that work in rodents may clarify important mechanistic details about this association. A key challenge in studying the effects of ELS on defensive behavior in rodents is the plethora of inconsistent results. This is particularly prominent with the maternal separation (MS) literature, one of the most commonly used ELS models in rodents.

View Article and Find Full Text PDF

Childhood maltreatment (CM) is a heterogeneous group of childhood adversities that can range from different forms of abuse (physical, sexual, emotional) or neglect (physical, emotional, cognitive), to severe bullying by peers. With an annual estimated cost of $500 billion in the United States alone, CM is recognized as one of the most significant risk factors for a range of psychiatric and medical conditions (White and Kaffman, 2019). Further, rates of numerous psychiatric, neurological, and medical conditions differ significantly between males and females (Gillies and McArthur, 2010), inspiring decades of research on how sex moderates consequences of CM (Gershon et al.

View Article and Find Full Text PDF

Stress has pronounced effects on the brain, and thus behavioral outputs. This is particularly true when the stress occurs during vulnerable points in development. A review of the clinical literature regarding the moderating effects of sex on psychopathology in individuals exposed to childhood maltreatment (CM) is complicated by a host of variables that are difficult to quantify and control in clinical settings.

View Article and Find Full Text PDF

Most large pharmaceutical companies have downscaled or closed their clinical neuroscience research programs in response to the low clinical success rate for drugs that showed tremendous promise in animal experiments intended to model psychiatric pathophysiology. These failures have raised serious concerns about the role of preclinical research in the identification and evaluation of new pharmacotherapies for psychiatry. In the absence of a comprehensive understanding of the neurobiology of psychiatric disorders, the task of developing "animal models" seems elusive.

View Article and Find Full Text PDF

Childhood maltreatment is associated with a wide range of psychopathologies including anxiety that emerge in childhood and in many cases persist in adulthood. Increased amygdala activation in response to threat and abnormal amygdala connectivity with frontolimbic brain regions, such as the hippocampus and the prefrontal cortex, are some of the most consistent findings seen in individuals exposed to childhood maltreatment. The underlying mechanisms responsible for these changes are difficult to study in humans but can be elucidated using animal models of early-life stress.

View Article and Find Full Text PDF

The role of the innate immune system in mediating some of the consequences of childhood abuse and neglect has received increasing attention in recent years. Most of the work to date has focused on the role that neuroinflammation plays in the long-term adult psychiatric and medical complications associated with childhood maltreatment. The effects of stress-induced neuroinflammation on neurodevelopment have received little attention because until recently this issue has not been studied systematically in animal models of early life stress.

View Article and Find Full Text PDF

Children exposed to abuse or neglect show abnormal hippocampal development and similar findings have been reported in rodent models. Using brief daily separation (BDS), a mouse model of early life stress, we previously showed that exposure to BDS impairs hippocampal function in adulthood and perturbs synaptic maturation, synaptic pruning, axonal growth and myelination in the developing hippocampus. Given that microglia are involved in these developmental processes, we tested whether BDS impairs microglial activity in the hippocampus of 14 (during BDS) and 28-day old mice (one week after BDS).

View Article and Find Full Text PDF

Conflicting reports are available with regard to the effects of childhood abuse and neglect on hippocampal function in children. While earlier imaging studies and some animal work have suggested that the effects of early-life stress (ELS) manifest only in adulthood, more recent studies have documented impaired hippocampal function in maltreated children and adolescents. Additional work using animal modes is needed to clarify the effects of ELS on hippocampal development.

View Article and Find Full Text PDF

Background: Early life stress (ELS) is cited as a risk for mood and anxiety disorders, potentially through altered serotonin neurotransmission. We examined the effects of ELS, utilizing the variable foraging demand (VFD) macaque model, on adolescent monoamine metabolites. We sought to replicate an increase in cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) observed in two previous VFD cohorts.

View Article and Find Full Text PDF

Children that are exposed to abuse or neglect show abnormal hippocampal function. However, the developmental mechanisms by which early life stress (ELS) impairs normal hippocampal development have not been elucidated. Here we propose that exposure to ELS blunts normal hippocampal growth by inhibiting the availability of ribosomal RNA (rRNA).

View Article and Find Full Text PDF

Background: Children exposed to early life stress (ELS) exhibit enlarged amygdala volume in comparison to controls. The primary goal of this study was to examine amygdala volumes in bonnet macaques subjected to maternal variable foraging demand (VFD) rearing, a well-established model of ELS. Preliminary analyses examined the interaction of ELS and the serotonin transporter gene on amygdala volume.

View Article and Find Full Text PDF