Publications by authors named "Arico B"

Despite high vaccination coverage world-wide, whooping cough, a highly contagious disease caused by is recently increasing in occurrence suggesting that novel vaccine formulations targeted at the prevention of colonization and transmission should be investigated. To identify new candidates for inclusion in the acellular formulation, we used spontaneously released outer membrane vesicles (OMV) as a potential source of key adhesins. The enrichment of Bvg+ OMV with adhesins and the ability of anti-OMV serum to inhibit the adhesion of to lung epithelial cells were demonstrated.

View Article and Find Full Text PDF

Aim: Bordetella pertussis has been shown to release outer membrane vesicles (OMV) both in vitro and in vivo but little is known about their biological role during the initial phases of B. pertussis infection of the airways.

Results: We have demonstrated that OMV are released by B.

View Article and Find Full Text PDF

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding.

View Article and Find Full Text PDF

Knowledge of the sequences and structures of proteins produced by microbial pathogens is continuously increasing. Besides offering the possibility of unraveling the mechanisms of pathogenesis at the molecular level, structural information provides new tools for vaccine development, such as the opportunity to improve viral and bacterial vaccine candidates by rational design. Structure-based rational design of antigens can optimize the epitope repertoire in terms of accessibility, stability, and variability.

View Article and Find Full Text PDF

Background: Non-typeable Haemophilus influenzae (NTHi) is a Gram negative microorganism residing in the human nasopharyngeal mucosa and occasionally causing infections of both middle ear and lower respiratory airways. A broadly protective vaccine against NTHi has been a long-unmet medical need, as the high genetic variability of this bacterium has posed great challenges.

Results: In this study, we developed a robust serum bactericidal assay (SBA) to optimize the selection of protective antigens against NTHi.

View Article and Find Full Text PDF

Translocation of the nasopharyngeal barrier by Neisseria meningitidis occurs via an intracellular microtubule-dependent pathway and represents a crucial step in its pathogenesis. Despite this fact, the interaction of invasive meningococci with host subcellular compartments and the resulting impact on their organization and function have not been investigated. The influence of serogroup B strain MC58 on host cell polarity and intracellular trafficking system was assessed by confocal microscopy visualization of different plasma membrane-associated components (such as E-cadherin, ZO-1 and transferrin receptor) and evaluation of the transferrin uptake and recycling in infected Calu-3 monolayers.

View Article and Find Full Text PDF

Unlabelled: LytM proteins belong to a family of bacterial metalloproteases. In Gram-negative bacteria, LytM factors are mainly reported to have a direct effect on cell division by influencing cleavage and remodeling of peptidoglycan. In this study, mining nontypeable Haemophilus influenzae (NTHI) genomes, three highly conserved open reading frames (ORFs) containing a LytM domain were identified, and the proteins encoded by the ORFs were named YebA, EnvC, and NlpD on the basis of their homology with the Escherichia coli proteins.

View Article and Find Full Text PDF

Neisseria meningitidis adhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells.

View Article and Find Full Text PDF

Neisseria meningitidis is a human pathogen that can cause fatal sepsis and meningitis once it reaches the blood stream and the nervous system. Here we demonstrate that a fragment, released upon proteolysis of the surface-exposed protein Neisserial Heparin Binding Antigen (NHBA), by the bacterial protease NalP, alters the endothelial permeability by inducing the internalization of the adherens junction protein VE-cadherin. We found that C2 rapidly accumulates in mitochondria where it induces the production of reactive oxygen species: the latter are required for the phosphorylation of the junctional protein and for its internalization that, in turn, is responsible for the endothelial leakage.

View Article and Find Full Text PDF

NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot.

View Article and Find Full Text PDF

Neisseria meningitidis NhhA (Neisseria hia/hsf homologue A) is an oligomeric outer membrane protein belonging to the family of trimeric autotransporter adhesins. NhhA mediates the interaction of N. meningitidis with human epithelial cells and components of the extracellular matrix.

View Article and Find Full Text PDF

The sequence variability of protective antigens is a major challenge to the development of vaccines. For Neisseria meningitidis, the bacterial pathogen that causes meningitis, the amino acid sequence of the protective antigen factor H binding protein (fHBP) has more than 300 variations. These sequence differences can be classified into three distinct groups of antigenic variants that do not induce cross-protective immunity.

View Article and Find Full Text PDF

Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development.

View Article and Find Full Text PDF

NadA is a trimeric autotransporter protein of Neisseria meningitidis belonging to the group of oligomeric coiled-coil adhesins. It is implicated in the colonization of the human upper respiratory tract by hypervirulent serogroup B N. meningitidis strains and is part of a multiantigen anti-serogroup B vaccine.

View Article and Find Full Text PDF

GNA2132 is a Neisseria meningitidis antigen of unknown function, discovered by reverse vaccinology, which has been shown to induce bactericidal antibodies in animal models. Here we show that this antigen induces protective immunity in humans and it is recognized by sera of patients after meningococcal disease. The protein binds heparin in vitro through an Arg-rich region and this property correlates with increased survival of the unencapsulated bacterium in human serum.

View Article and Find Full Text PDF

Hypervirulent MenB causing fatal human infections frequently display the oligomeric-coiled coil adhesin NadA, a 45-kDa intrinsic outer membrane protein implicated in binding to and invasion of respiratory epithelial cells. A recombinant soluble mutant lacking the 10-kDa COOH terminal membrane domain (NadA(Delta351-405)) also activates human monocytes/macrophages/DCs. As NadA is physiologically released during sepsis as part of OMVs, in this study, we tested the hypothesis that NadA(+) OMVs have an enhanced or modified proinflammatory/proimmune action compared with NadA(-) OMVs.

View Article and Find Full Text PDF

The Oca (Oligomeric coiled-coil adhesin) family is a subgroup of the bacterial trimeric autotransporter adhesins, which includes structurally related proteins, such as YadA of Yersinia enterocolitica and NadA of Neisseria meningitidis. In this study, we searched in silico for novel members of this family in bacterial genomes and identified HadA (Haemophilus adhesin A), a trimeric autotransporter expressed only by Haemophilus influenzae biogroup aegyptius causing Brazilian purpuric fever (BPF), a fulminant septicemic disease of children. By comparative genomics and sequence analysis we predicted that the hadA gene is harboured on a mobile genetic element unique to BPF isolates.

View Article and Find Full Text PDF

Factor H-binding protein (fHBP; GNA1870) is one of the antigens of the recombinant vaccine against serogroup B Neisseria meningitidis, which has been developed using reverse vaccinology and is the basis of a meningococcal B vaccine entering phase III clinical trials. Binding of factor H (fH), an inhibitor of the complement alternative pathway, to fHBP enables N. meningitidis to evade killing by the innate immune system.

View Article and Find Full Text PDF

NadA and NhhA, two surface proteins of serogroup B Neisseria meningitidis identified as candidate vaccine antigens, were expressed on the surface of the human oral commensal bacterium Streptococcus gordonii. Recombinant strains were used to immunize BALB/c mice by the intranasal route and the local and systemic immune response was assessed. Mice were inoculated with recombinant bacteria administered alone or with LTR72, a partially inactivated mutant of Escherichia coli heat-labile enterotoxin, as a mucosal adjuvant.

View Article and Find Full Text PDF

A soluble recombinant form of Neisseria meningitidis adhesin A (NadADelta351-405), proposed as a constituent of anti-meningococcal B vaccines, is here shown to specifically interact with and immune-modulate human monocyte-derived dendritic cells (mo-DCs). After priming with IFN-gamma and stimulation with NadADelta351-405, mo-DCs strongly up-regulated maturation markers CD83, CD86, CD80, and HLA-DR, secreted moderate quantities of TNF-alpha, IL-6, and IL-8, and produced a slight, although significant, amount of IL-12p70. Costimulation of mo-DCs with NadADelta351-405 and the imidoazoquinoline drug R-848, believed to mimic bacterial RNA, increased CD86 in an additive way, but strongly synergized the secretion of IL-12p70, IL-1, IL-6, TNF-alpha, and MIP-1alpha, especially after IFN-gamma priming.

View Article and Find Full Text PDF

Meningitis and sepsis caused by serogroup B meningococcus are two severe diseases that still cause significant mortality. To date there is no universal vaccine that prevents these diseases. In this work, five antigens discovered by reverse vaccinology were expressed in a form suitable for large-scale manufacturing and formulated with adjuvants suitable for human use.

View Article and Find Full Text PDF

NhhA, Neisseriahia/hsf homologue, or GNA0992, is an oligomeric outer membrane protein of Neisseria meningitidis, recently included in the family of trimeric autotransporter adhesins. In this study we present the structural and functional characterization of this protein. By expressing in Escherichia coli the full-length gene, deletion mutants and chimeric proteins of NhhA, we demonstrated that the last 72 C-terminal residues are able to allow trimerization and localization of the N-terminal protein domain to the bacterial surface.

View Article and Find Full Text PDF

GNA 1870 is a novel surface-exposed lipoprotein, identified by genome analysis of Neisseria meningitidis strain MC58, which induces bactericidal antibodies. Three sequence variants of the protein were shown to be sufficient to induce bactericidal antibodies against a panel of strains representative of the diversity of serogroup B meningococci. Here, we studied the antigenic and immunogenic properties of GNA 1870, which for convenience was divided into domains A, B, and C.

View Article and Find Full Text PDF

Neisseria meningitidis is a human pathogen, which is a major cause of sepsis and meningitis. The bacterium colonizes the upper respiratory tract of approximately 10% of humans where it lives as a commensal. On rare occasions, it crosses the epithelium and reaches the bloodstream causing sepsis.

View Article and Find Full Text PDF

Conjugated polysaccharide vaccines protect against serogroup C meningococci. However, this approach cannot be applied to serogroup B, which is still a major cause of meningitis. We evaluated the immunogenicity of three surface-exposed proteins from serogroup B Neisseria meningitidis (App, NhhA, and NadA) identified during whole-genome sequencing.

View Article and Find Full Text PDF