We have used temperature gradient surface plasmon resonance (SPR) measurements to quantitatively evaluate how the stability of different types of hybrids formed with DNA probes on surfaces is affected by probe spacing. SPR sensors with different average surface densities of probes were prepared by coadsorbing probes with lateral spacers strands comprised of phosphorothioated adenine nucleotides (A15*). Increasing the fraction of A15* spacers in the immobilization solution results in larger distances between probes on the sensor, determined here using a combination of SPR and X-ray photoelectron spectroscopy (XPS) measurements.
View Article and Find Full Text PDFWe report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied.
View Article and Find Full Text PDFThe thermal stabilities of double-stranded DNA hybrids immobilized on gold surfaces are shown to be significantly affected by the conformation of the hybrid. To analyze this behavior, DNA probes were immobilized using attachment strategies where the nucleotides within the strand had varying levels of interactions with the gold substrate. The abilities of these probes to form double-stranded hybrids with solution DNA targets were evaluated by surface plasmon resonance (SPR) over a temperature range 25-60 °C.
View Article and Find Full Text PDFThe structure and stability of single- and double-stranded DNA hybrids immobilized on gold are strongly affected by nucleotide-surface interactions. To systematically analyze the effects of these interactions, a set of model DNA hybrids was prepared in conformations that ranged from end-tethered double-stranded to directly adsorbed single-stranded (hairpins) and characterized by surface plasmon resonance (SPR) imaging, X-ray photoelectron spectroscopy (XPS), fluorescence microscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The stabilities of these hybrids were evaluated by exposure to a series of stringency rinses in solutions of successively lower ionic strength and by competitive hybridization experiments.
View Article and Find Full Text PDFQuantitative and reproducible data can be obtained from surface-based DNA sensors if variations in the conformation and surface density of immobilized single-stranded DNA capture probes are minimized. Both the conformation and surface density can be independently and deterministically controlled by taking advantage of the preferential adsorption of adenine nucleotides (dA) on gold, as previously demonstrated using a model system in Opdahl, A.; Petrovykh, D.
View Article and Find Full Text PDFWe have examined the adsorption of DNA-wrapped single-walled carbon nanotubes (DNA-SWNTs) on hydrophobic, hydrophilic, and charged surfaces of alkylthiol self-assembled monolayers (SAMs) on gold. Our goal is to understand how DNA-SWNTs interact with surfaces of varying chemical functionality. These samples were characterized using reflection absorption FTIR (RAIRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy.
View Article and Find Full Text PDFSelf-assembled monolayers (SAMs) of glucose derivatives on gold have been prepared from alpha- and beta-glucopyranosylamide derivatives. The glucosyl conjugates were synthesized stereoselectively via the in situ generation of glucosyl isoxazolines followed by treatment with thiopyridyl esters. The resulting film structures were characterized by atomic force microscopy, reflection Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2007
We describe self-assembly of ssDNA brushes that exploits the intrinsic affinity of adenine nucleotides (dA) for gold surfaces. The grafting density and conformation of these brushes is deterministically controlled by the length of the anchoring dA sequences, even in the presence of thymine nucleotides (dT). We produce and characterize brushes of model block-oligonucleotides, d(T(m)-A(n)), with systematically varied lengths m and n of the thymine and adenine blocks [denoted d(T(m)) and d(A(n)), respectively].
View Article and Find Full Text PDFWe have studied the formation of self-assembled monolayers (SAMs) of n-alkanethiols on platinum thin films using X-ray photoelectron spectroscopy (XPS), reflection-absorption infrared spectroscopy (RAIRS), spectroscopic ellipsometry (SE), and contact angle (CA) measurements. Specifically, SAMs of 1-hexanethiol, 1-dodecanethiol, and 1-octadecanethiol were grown on polycrystalline Pt films, and the effects of Pt surface preparation, deposition conditions, and solvent treatments on the initial quality and stability of the monolayer in air were investigated. The SAMs prepared under ambient conditions on piranha-cleaned and UV/ozone-cleaned substrates were compared to monolayers formed on template-stripped Pt in an inert atmosphere.
View Article and Find Full Text PDFWe demonstrate how the orientation and ordering of DNA bases in ultrahigh vacuum (UHV) and ambient environments can be determined using complementary spectroscopic methods. Near-edge X-ray absorption fine structure (NEXAFS) with fluorescence detection, X-ray photoelectron (XPS), and Fourier transform infrared (FTIR) spectroscopies are used to quantify the coverage, chemical composition, orientation, and ordering of thymine bases in model self-assembled monolayers of thymine homo-oligonucleotides [oligo(dT)] on gold. We find that, in monolayers of thiol-modified oligo(dT), thymine bases tend to orient parallel to the Au substrate, and this preferential orientation is significantly more pronounced in monolayers of thiolated 5-mers compared to 25-mers.
View Article and Find Full Text PDFThe surface mechanical properties of poly(hydroxyethyl)methacrylate (pHEMA)-based contact lenses were monitored as a function of humidity by atomic force microscopy (AFM). Surface viscoelastic and adhesion values were extracted from AFM force versus distance interaction curves and were found to be strongly dependent on the bulk water content of the lens and on the relative humidity. At low relative humidity, 40-50%, the dehydration rate from the surface is faster than the hydration rate from the bulk, leading to a rigid surface region that has mechanical properties similar to those measured on totally dehydrated lenses.
View Article and Find Full Text PDFThe surfaces of two types of soft contact lenses neutral and ionic hydrogels--were characterized by atomic force microscopy (AFM) and sum-frequency-generation (SFG) vibrational spectroscopy. AFM measurements in saline solution showed that the presence of ionic functional groups at the surface lowered the friction and adhesion to a hydrophobic polystyrene tip. This was attributed to the specific interactions of water and the molecular orientation of hydrogel chains at the surface.
View Article and Find Full Text PDF