Extracellular vesicles (EVs) are cell-to-cell interaction tools that are attracting increasing interest in the literature in two opposing areas. In addition to their role in physiological development, there is growing evidence of their involvement in healing and protective processes. However, EVs also mediate pathological conditions, particularly contributing to the progression of several chronic diseases, such as neurodegenerative diseases.
View Article and Find Full Text PDFChemotherapy-induced peripheral neurotoxicity is one of the most common dose-limiting toxicities of several widely used anticancer drugs such as platinum derivatives (cisplatin) and taxanes (paclitaxel). Several molecular mechanisms related to the onset of neurotoxicity have already been proposed, most of them having the sensory neurons of the dorsal root ganglia (DRG) and the peripheral nerve fibers as principal targets. In this study we explore chemotherapy-induced peripheral neurotoxicity beyond the neuronocentric view, investigating the changes induced by paclitaxel (PTX) and cisplatin (CDDP) on satellite glial cells (SGC) in the DRG and their crosstalk.
View Article and Find Full Text PDFHistone deacetylases (HDACs) are a group of enzymes that modify gene expression through the lysine acetylation of both histone and non-histone proteins, leading to a broad range of effects on various biological pathways. New insights on this topic broadened the knowledge on their biological activity and even more questions arose from those discoveries. The action of HDACs is versatile in biological pathways and, for this reason, inhibitors of HDACs (HDACis) have been proposed as a way to interfere with HDACs' involvement in tumorigenesis.
View Article and Find Full Text PDFCellular communication and the transfer of information from one cell to another is crucial for cell viability and homeostasis. During the last decade, tunneling nanotubes (TNTs) have attracted scientific attention, not only as a means of direct intercellular communication, but also as a possible system to transport biological cargo between distant cells. Peculiar TNT characteristics make them both able to increase cellular survival capacities, as well as a potential target of neurodegenerative disease progression.
View Article and Find Full Text PDFOxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a frequent adverse event of colorectal cancer treatment. OIPN encompasses a chronic and an acute syndrome. The latter consists of transient axonal hyperexcitability, due to unbalance in Na voltage-operated channels (NaVOC).
View Article and Find Full Text PDFNeurons are permanent cells whose key feature is information transmission via chemical and electrical signals. Therefore, a finely tuned homeostasis is necessary to maintain function and preserve neuronal lifelong survival. The cytoskeleton, and in particular microtubules, are far from being inert actors in the maintenance of this complex cellular equilibrium, and they participate in the mobilization of molecular cargos and organelles, thus influencing neuronal migration, neuritis growth and synaptic transmission.
View Article and Find Full Text PDFMesenchymal Stem Cells (MSCs) are adult multipotent cells able to increase sensory neuron survival: direct co-culture of MSCs with neurons is pivotal to observe a neuronal survival increase. Despite the identification of some mechanisms of action, little is known about how MSCs physically interact with neurons. The aim of this paper was to investigate and characterize the main mechanisms of interaction between MSCs and neurons.
View Article and Find Full Text PDFChemotherapy-induced peripheral neuropathy (CIPN) is widely recognized as a potentially severe toxicity that often leads to dose reduction or discontinuation of cancer treatment. Symptoms may persist despite discontinuation of chemotherapy and quality of life can be severely compromised. The clinical symptoms of CIPN, and the cellular and molecular targets involved in CIPN, are just as diverse as the wide variety of anticancer agents that cause peripheral neurotoxicity.
View Article and Find Full Text PDFThe advent of the new revolutionary approach based on regenerative medicine is progressively reshaping the therapeutic scenario of many different diseases, such as cardiovascular diseases and immune diseases, with encouraging results. During the last 10 years, many studies have also proposed the use of mesenchymal stem cells (MSCs), adult stem cells with several interesting properties already used in different experimental models, for the treatment of diabetes, however, reporting conflicting outcomes. These reasons have given rise to a question: are these cells a real trump card for the biomedical field? Are they really able to outclass the traditional therapies, or at least able to give an advantage over them? In this review, we will discuss the most promising results obtained with MSCs for the treatment of diabetes and its complications, we will compare the different therapeutic treatments applied as well as the most likely mechanisms of action, and overall we will give an in-depth overview of the pros and the cons of the use of MSCs for the therapy of both type-1 and type-2 diabetes.
View Article and Find Full Text PDFBackground And Objectives: Transplantation of pancreatic islets is an intriguing new therapeutic option to face the worldwide spread problem of Type-I diabetes. Currently, its clinical use is limited by several problems, mainly based on the high number of islets required to restore normoglycaemia and by the low survival of the transplanted tissue. A promising attempt to overcome the limits to such an approach was represented by the use of Mesenchymal Stem Cells (MSC).
View Article and Find Full Text PDFDiabetes is a worldwide disease which actually includes different disorders related to glucose metabolism. According to different epidemiological studies, patients affected by diabetes present a higher risk to develop both acute and chronic pancreatitis, clinical situations which, in turn, increase the risk to develop pancreatic cancer. Current therapies are able to adjust insulin levels according to blood glucose peak, but they only partly reach the goal to abrogate the consequent inflammatory milieu responsible for diabetes-related diseases.
View Article and Find Full Text PDFIn this manuscript we report on the design, synthesis and evaluation of dual Sigma 1 Receptor (S1R) modulators/Acetylcholinesterase (AChE) inhibitors endowed with antioxidant and neurotrophic properties, potentially able to counteract neurodegeneration. The compounds based on arylalkylaminoketone scaffold integrate the pharmacophoric elements of RRC-33, a S1R modulator developed by us, donepezil, a well-known AChE inhibitor, and curcumin, a natural antioxidant compound with neuroprotective properties. A small library of compounds was synthesized and preliminary in vitro screening performed.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are adult bone marrow-derived stem cells actually proposed indifferently for the therapy of neurological diseases of both the Central (CNS) and the Peripheral Nervous System (PNS), as a panacea able to treat so many different diseases by their immunomodulatory ability and supportive action on neuronal survival. However, the identification of the exact mechanism of MSC action in the different diseases, although mandatory to define their real and concrete utility, is still lacking. Moreover, CNS and PNS neurons present many different biological properties, and it is still unclear if they respond in the same manner not only to MSC treatment, but also to injuries.
View Article and Find Full Text PDFEffective therapies for multiple sclerosis (MS) are still missing. This neurological disease affects more than 2.5 million people worldwide.
View Article and Find Full Text PDFChemotherapy-induced peripheral neurotoxicity (CIPN) is a potentially dose-limiting side effect of the treatment of several cancers. CIPN is predominantly or exclusively sensory, and it is frequently associated with unpleasant symptoms, overall referred to as "pain." However, given the markedly different clinical presentation and course of CIPN depending on the antineoplastic drug used, the broad term "pain" in the specific context of CIPN needs to be reconsidered and refined.
View Article and Find Full Text PDFType-1 Diabetes is generally treated with exogenous insulin administration. Despite treatment, a very common long term consequence of diabetes is the development of a disabling and painful peripheral neuropathy. The transplantation of pancreatic islets is an advanced alternative therapeutic approach, but its clinical application is still very limited, mainly because of the great number of islets required to complete the procedure and of their short-term survival.
View Article and Find Full Text PDFBackground And Aim: Cerebral ischemia is characterized by both acute and delayed neuronal injuries. Neuro-protection is a major issue that should be properly addressed from a pharmacological point of view, and cell-based treatment approaches are of interest due to their potential pleiotropic effects. Endothelial progenitor cells have the advantage of being mobilized from the bone marrow into the circulation, but have been less studied than other stem cells, such as mesenchymal stem cells.
View Article and Find Full Text PDFExpert Rev Neurother
November 2016
Background/aim: Peripheral neurotoxicity is a dose-limiting factor of many chemotherapeutic agents, including cisplatin. Mesenchymal stem cells are promising for the treatment of several neurological disorders, and our aim was to verify the neuroprotective potential of human mesenchymal stem cells (hMSCs) on dorsal root ganglia (DRG) exposed to cisplatin.
Materials And Methods: DRG were exposed to different cisplatin concentrations and then co-cultured with hMSCs or with hMSC-conditioned medium.
Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a dose-limiting side effect of several antineoplastic drugs which significantly reduces patients' quality of life. Although different molecular mechanisms have been investigated, CIPN pathobiology has not been clarified yet. It has largely been recognized that Dorsal Root Ganglia are the main targets of chemotherapy and that the longest nerves are the most damaged, together with fast axonal transport.
View Article and Find Full Text PDFNeurobasal medium (NBM) is a widely used medium for neuronal cultures, originally formulated to support survival of rat hippocampal neurons, but then optimized for several other neuronal subtypes. In the present study, the toxic effect of NBM on long-term cortical neuron cultures has been reported and investigated. A significant neuronal cell loss was observed 24 h after the total medium change performed at days in vitro 10.
View Article and Find Full Text PDFBackground And Objectives: Cellular therapies using Mesenchymal Stem Cells (MSCs) represent a promising approach for the treatment of degenerative diseases, in particular for mesengenic tissue regeneration. However, before the approval of clinical trials in humans, in vitro studies must be performed aimed at investigating MSCs' biology and the mechanisms regulating their proliferation and differentiation abilities. Besides studies on human MSCs (hMSCs), MSCs derived from rodents have been the most used cellular type for in vitro studies.
View Article and Find Full Text PDFThe clinical usability of pancreatic islet transplantation for the treatment of type I diabetes, despite some encouraging results, is currently hampered by the short lifespan of the transplanted tissue. In vivo studies have demonstrated that co-transplantation of Mesenchymal Stem Cells (MSCs) with transplanted pancreatic islets is more effective with respect to pancreatic islets alone in ensuring glycemia control in diabetic rats, but the molecular mechanisms of this action are still unclear. The aim of this study was to elucidate the molecular mechanisms of the positive effect of MSCs on pancreatic islet functionality by setting up direct, indirect and mixed co-cultures.
View Article and Find Full Text PDFOver the last few years the therapeutic approach to demyelinating diseases has radically changed, strategies having been developed aimed at partnering the classic symptomatic treatments with the most advanced regenerative medicine tools. At first, the transplantation of myelinogenic cells, Schwann cells or oligodendrocytes was suggested, but the considerable technical difficulties, (poor availability, difficulties in harvesting and culturing, and the problem of rejection in the event of non-autologous sources), shifted attention towards more versatile cellular types, such as Mesenchymal Stem Cells (MSCs). Recent studies have already demonstrate both in vitro and in vivo that glially-primed MSCs (through exposure to chemical cocktails) have myelogenic abilities.
View Article and Find Full Text PDFThe peripheral nervous system is a frequent target of toxic agents. The accurate identification of the sites of neurotoxic action through the morphological characterization of reliable in vivo models or in vitro systems can give fundamental clues when investigating the pathogenesis and interpreting the clinical features of drug-induced neuropathy. The morphological approach has been used to investigate almost all the anticancer drugs able to induce chemotherapy-induced peripheral neurotoxicity, i.
View Article and Find Full Text PDF