Publications by authors named "Arianna Pansini"

Recovering seagrass ecosystems through restoration has become impellent to re-establish their functionality and services. Although the use of seedlings may represent an appropriate solution, little information is provided on the seedling-based restoration effectiveness with influence of biotic and abiotic interactions. Survival, morphological development and leaf total phenol content of transplanted Posidonia oceanica seedlings were evaluated under different origin, thermal regimes and herbivore pressure through a five-months field experiment in two MPAs, located on the west (cold) and east (warm) Sardinia coast to explore the effectiveness of seedling-based restoration.

View Article and Find Full Text PDF

Restoration of vulnerable marine habitats is becoming increasingly popular to cope with widespread habitat loss and the resulting decline in biodiversity and ecosystem services. Lately, restoration strategies have been employed to enhance the recovery of degraded meadows of the Mediterranean endemic seagrass Posidonia oceanica. Typically, habitat restoration success is evaluated by the persistence of foundation species after transplantation (e.

View Article and Find Full Text PDF

This study aimed at identifying the importance of the thermal framework preceding Posidonia oceanica flowering induction (autumn before the flowering year) and anthesis (summer of the flowering year). In 53 locations of Sardinia (Italy), 35 vertical shoots were collected in 2001, 2020 and 2023 and analyzed through lepidochronology, detecting past flowering events from 1991 to 2022. Flowering probability was positively correlated with autumn SST range and MHWs, stressing the importance of the temperature in the year preceding the flowering.

View Article and Find Full Text PDF

The increase of marine heat waves (MHWs) occurrence is exacerbated in Mediterranean Sea and temperature resilience-enhancing strategies on key species, such as the seagrass Posidonia oceanica, need to be investigated. "Priming" describes a stimulus that prepares an organism for an improved response to upcoming environmental changes by triggering a memory that remains during a lag-phase. The aim of this study, conducted in Sardinia (Italy), was to investigate whether the development of thermo-primed P.

View Article and Find Full Text PDF

Restoration of coastal ecosystems, particularly those dominated by seagrasses, has become a priority to recover the important ecosystem services they provide. However, assessing restoration outcomes as a success or failure remains still difficult, probably due to the unique features of seagrass species and the wide portfolio of practices used on transplanting actions. Here, several traits (maximum leaf length, number of leaves, leaf growth rate per shoot, and leaf elemental carbon and nitrogen contents) of transplanted seagrass Posidonia oceanica were compared to reference meadows in five sites of Western Mediterranean Sea in which restoration were completed in different times.

View Article and Find Full Text PDF

Global warming is expected to have inexorable and profound effects on marine ecosystems, particularly in foundation species such as seagrasses. Identifying responses to warming and comparing populations across natural temperature gradients can inform how future warming will impact the structure and function of ecosystems. Here, we investigated how thermal environment, intra-shoot and spatial variability modulate biochemical responses of the Mediterranean seagrass Posidonia oceanica.

View Article and Find Full Text PDF

Ocean acidification has been consistently evidenced to have profound and lasting impacts on marine species. Observations have shown seagrasses to be highly susceptible to future increased pCO conditions, but the responses of early life stages as seedlings are poorly understood. This study aimed at evaluating how projected Mediterranean Sea acidification affects the survival, morphological and biochemical development of Posidonia oceanica seedlings through a long-term field experiment along a natural low pH gradient.

View Article and Find Full Text PDF

Primary producers nutritional content affects the entire food web. Here, changes in nutritional value associated with temperature rise and the occurrence of marine heat waves (MHWs) were explored in the endemic Mediterranean seagrass Posidonia oceanica. The variability of fatty acids (FAs) composition and carbon (C) and nitrogen (N) content were examined during summer 2021 from five Mediterranean sites located at the same latitude but under different thermal environments.

View Article and Find Full Text PDF

Acclimation is a response that results from chronic exposure of an individual to a new environment. This study aimed to investigate whether the thermal environment affects the early development of the seagrass Posidonia oceanica, and whether the effects of a field-simulated Marine Heat Wave (MHW) on seedlings change depending on acclimation. The experiment was done in the field using a crossed design of Acclimation (acclimated vs unacclimated) and MHW (present vs absent) factors.

View Article and Find Full Text PDF
Article Synopsis
  • Seagrass meadows are vital coastal ecosystems that enhance biodiversity, nutrient cycling, carbon burial, and sediment stability, but they face serious threats from human activities.
  • Active restoration is essential for recovering these ecosystems, necessitating reliable data on past restoration efforts to inform management decisions.
  • There is a lack of consistent information on restoring the seagrass Posidonia oceanica, highlighting the need for more field experiments and international collaboration among scientists and stakeholders to establish effective restoration practices.
View Article and Find Full Text PDF

Background: Marine protected areas (MPAs) usually have both positive effects of protection for the fisheries' target species and indirect negative effects for sea urchins. Moreover, often in MPAs sea urchin human harvest is restricted, but allowed. This study is aimed at estimating the effect of human harvest of the sea urchin within MPAs, where fish exploitation is restricted and its density is already controlled by a higher natural predation risk.

View Article and Find Full Text PDF

Comparing populations across temperature gradients can inform how global warming will impact the structure and function of ecosystems. Shoot density, morphometry and productivity of the seagrass Posidonia oceanica to temperature variation was quantified at eight locations in Sardinia (western Mediterranean Sea) along a natural sea surface temperature (SST) gradient. The locations are spanned for a narrow range of latitude (1.

View Article and Find Full Text PDF

Predicting community-level responses to seawater warming is a pressing goal of global change ecologists. How far such predictions can be derived from a fine gradient of thermal environments needs to be explored, even if ignoring water climatology does not allow estimating subtidal marine heat waves. In this study insights about the influence of the thermal environment on the coralligenous community structure were gained by considering sites (Sardinia, Italy) at different temperature conditions.

View Article and Find Full Text PDF