Publications by authors named "Arianna Nicolussi"

Introduction: Compared with breast cancer (BC) in women, BC in men is a rare disease with genetic and molecular peculiarities. Therapeutic approaches for male BC (MBC) are currently extrapolated from the clinical management of female BC, although the disease does not exactly overlap in males and females. Data on specific molecular biomarkers in MBC are lacking, cutting out male patients from more appropriate therapeutic strategies.

View Article and Find Full Text PDF

Pediatric high-grade gliomas represent a heterogeneous group of tumors with a wide variety of molecular features. We performed whole exome sequencing and methylation profiling on matched primary and recurrent tumors from four pediatric patients with hemispheric high-grade gliomas. Genetic analysis showed the presence of some variants shared between primary and recurrent tumors, along with other variants exclusive of primary or recurrent tumors.

View Article and Find Full Text PDF

Background: BRCA1/2 VUSs represent an important clinical issue in risk assessment for the breast/ovarian cancer families (HBOC) families. Among them, some occurring within the intron-exon boundary may lead to aberrant splicing process by altering or creating de novo splicing regulatory elements or unmasking cryptic splice site. Defining the impact of these potential splice variants at functional level is important to establish their pathogenic role.

View Article and Find Full Text PDF

We performed next generation sequencing of DNA extracted from the neoplastic tissues obtained from a patient who underwent surgery for a large right ovarian carcinoma (OC) of endometrioid type associated with endometrial cancer (EC). This was done in order to ascertain whether the tumors were synchronous endometrial/ovarian cancers or an advanced metastatic stage from either the ovary or the uterus. Pathologic criteria favoured synchronous EC/OC.

View Article and Find Full Text PDF

Extensive molecular characterization of human colorectal cancer (CRC) via Next Generation Sequencing (NGS) indicated that genetic or epigenetic dysregulation of a relevant, but limited, number of molecular pathways typically occurs in this tumor. The molecular picture of the disease is significantly complicated by the frequent occurrence of individually rare genetic aberrations, which expand tumor heterogeneity. Inter- and intratumor molecular heterogeneity is very likely responsible for the remarkable individual variability in the response to conventional and target-driven first-line therapies, in metastatic CRC (mCRC) patients, whose median overall survival remains unsatisfactory.

View Article and Find Full Text PDF

Background: Genetic testing for germline mutations in hereditary breast/ovarian cancer patients requires screening for single nucleotide variants, small insertions/deletions and large genomic rearrangements (LGRs). These studies have long been run by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). The recent introduction of next-generation sequencing (NGS) platforms dramatically improved the speed and the efficiency of DNA testing for nucleotide variants, while the possibility to correctly detect LGRs by this mean is still debated.

View Article and Find Full Text PDF

Background: Conventional methods used to identify and germline mutations in hereditary cancers, such as Sanger sequencing/multiplex ligation-dependent probe amplification (MLPA), are time-consuming and expensive, due to the large size of the genes. The recent introduction of next-generation sequencing (NGS) benchtop platforms offered a powerful alternative for mutation detection, dramatically improving the speed and the efficiency of DNA testing. Here we tested the performance of the Ion Torrent PGM platform with the Ion AmpliSeq BRCA1 and BRCA2 Panel in our clinical routine of breast/ovarian hereditary cancer syndrome assessment.

View Article and Find Full Text PDF

The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy.

View Article and Find Full Text PDF

The introduction of multigene panel testing for hereditary breast/ovarian cancer screening has greatly improved efficiency, speed, and costs. However, its clinical utility is still debated, mostly due to the lack of conclusive evidences on the impact of newly discovered genetic variants on cancer risk and lack of evidence-based guidelines for the clinical management of their carriers. In this pilot study, we aimed to test whether a systematic and multiparametric characterization of newly discovered mutations could enhance the clinical utility of multigene panel sequencing.

View Article and Find Full Text PDF

Peroxiredoxins (PRDXs) are a ubiquitously expressed family of small (22-27 kDa) non-seleno peroxidases that catalyze the peroxide reduction of HO, organic hydroperoxides and peroxynitrite. They are highly involved in the control of various physiological functions, including cell growth, differentiation, apoptosis, embryonic development, lipid metabolism, the immune response, as well as cellular homeostasis. Although the protective role of PRDXs in cardiovascular and neurological diseases is well established, their role in cancer remains controversial.

View Article and Find Full Text PDF

Background: Variant ATM heterozygotes have an increased risk of developing cancer, cardiovascular diseases, and diabetes. Costs and time of sequencing and ATM variant complexity make large-scale, general population screenings not cost-effective yet. Recently, we developed a straightforward, rapid, and inexpensive test based on p53 mitotic centrosomal localization (p53-MCL) in peripheral blood mononuclear cells (PBMCs) that diagnoses mutant ATM zygosity and recognizes tumor-associated ATM polymorphisms.

View Article and Find Full Text PDF

Objectives: Treatment individualization based on specific molecular biomarkers is becoming increasingly important in oncology. In colorectal cancer (CRC), the molecular characterization of RAS and BRAF mutation status for prognostic and predictive purposes is commonly performed by different validated methods. However, as the number of clinically relevant mutations to be analyzed increases, the definition of new approaches for more sensitive, rapid and economic patient selection urges.

View Article and Find Full Text PDF

Hereditary breast and ovarian cancer are mainly linked to mutations in BRCA1 and BRCA2 genes which confer a similar cumulative risk of developing breast cancer. Importantly, while BRCA2 mutation carriers generally have a lower cumulative risk for ovarian cancer, mutations clustered in the central portion of BRCA2 are associated with a higher proportion of ovarian compared with breast cancer cases. The boundaries of this ovarian cancer cluster region (OCCR) have been tentatively defined within a 3.

View Article and Find Full Text PDF

Circadian rhythms are highly conserved time tracking systems regulating important biological processes at both systemic and cellular levels. The present study was aimed to identify proteins and biological functions circadian regulated in human keratinocytes. HaCaT keratinocytes were entrained by temperature cycles, and a proteomic study was performed on cell fractions isolated under free running conditions at constant temperature.

View Article and Find Full Text PDF

Many clinical studies highlight the dichotomous role of PRDXs in human cancers, where they can exhibit strong tumor-suppressive or tumor-promoting functions. Recent evidence suggests that lower expression of PRDXs correlates with cancer progression in colorectal cancer (CRC) or in esophageal squamous carcinoma. In the thyroid, increased levels of PRDX1 has been described in follicular adenomas and carcinomas, as well as in thyroiditis, while reduced levels of PRDX6 has been found in follicular adenomas.

View Article and Find Full Text PDF

Smad4 is a key mediator of the transforming growth factor-β (TGF-β) superfamily that is involved in the control of cell proliferation and differentiation. We recently demonstrated that a Smad4 mutation, Smad4 C324Y, isolated from nodal metastases of papillary thyroid carcinoma, causes an increase of TGF-β signaling, responsible for the acquisition of transformed phenotype and invasive behaviour in thyroid cells stably expressing this mutation. In this paper, we demonstrate that the stable expression of Smad4 C324Y mutation in FRTL-5 cells is responsible for TSH-independent growth ability.

View Article and Find Full Text PDF

Phosphoinositide-3-OH kinase (PI3K) signalling regulates various cellular processes, including cell survival, growth, proliferation and motility, and is among the most frequently mutated pathways in cancer. Although the involvement of p85αPI3K SH2 domain in signal transduction has been extensively studied, the function of the SH3 domain at the N-terminus remains elusive. A serine (at codon 83) adjacent to the N-terminal SH3 domain in the PI3K regulatory subunit p85αPI3K that is phosphorylated by protein kinase A (PKA) in vivo and in vitro has been identified.

View Article and Find Full Text PDF
Article Synopsis
  • Smad proteins, especially Smad4, are crucial in TGFβ signaling and are often mutated in various cancers, including thyroid cancer.
  • The study focused on the Smad4 C324Y mutation found in a form of thyroid cancer, showing that it enhances TGFβ signaling leading to aggressive cancer traits.
  • This mutation promotes a transformation in cell behavior, including reduced sensitivity to TGFβ1, independent growth, and increased motility, highlighting its potential as a prognostic and therapeutic target in thyroid cancer.
View Article and Find Full Text PDF

Normal epithelial thyroid cells in culture are inhibited by TGF-β1. Instead, transformed thyroid cell lines are frequently resistant to its growth inhibitory effect. Loss of TGF-β responsiveness could be due to a reduced expression of TGF-β receptors, as shown in transformed rat thyroid cell lines and in human thyroid tumors, or to alterations of other genes controlling TGF-β signal transduction pathway.

View Article and Find Full Text PDF

It has been demonstrated that transforming growth factor-β (TGFβ) and other members of TGFβ superfamily play an important role in thyroid proliferative diseases. The deficiencies of SMAD4 are responsible to accelerate the malignant progression of neoplastic lesions in several types of tumors. Therefore, the objective of the present study was to determine the functional role of reduced expression of SMAD4 in human papillary thyroid carcinogenesis.

View Article and Find Full Text PDF

Transforming Growth Factor-beta1 (TGF -beta1) is a multifunctional cytokine that regulates a number of cellular processes such as cell growth, differentiation, plasticity, cell motility, adhesiveness, embryogenesis, development and apoptosis through binding to TGF-beta receptors. We have previously demonstrated that K-ras-transformed rat thyroid cells, K10, are resistant to the growth inhibitory action of TGF-beta1, because they show a decreased expression of type II receptor (TbetaRII). Clones obtained transfecting TbetaRII, partially revert their malignant phenotype, showing a reduction in the anchorage-dependent and -independent cell growth and a statistically significant decrease in tumourigenicity with respect to the highly malignant parental cells, both in spontaneous and artificial metastases, when transplanted in athymic nude mice.

View Article and Find Full Text PDF

TGF-beta1 is a potent inhibitor of growth and DNA synthesis in thyroid cells. It has also been shown that TGF-beta1 inhibits thyrocyte function. The functional inhibition is represented by a downregulation of thyroid specific genes, such as Na(+)/I(-) symporter (NIS), thyroglobulin (TG) and thyroperoxidase (TPO).

View Article and Find Full Text PDF