There is a need to further explore the convergence of mechanobiology and dimensionality with systematic investigations of cellular response to matrix mechanics in 2D and 3D cultures. Here, a semisynthetic hydrogel capable of supporting both 2D and 3D cell culture is applied to investigate cell response to matrix modulus and ligand density. The culture materials are fabricated from adducts of polyethylene glycol (PEG) or PluronicF127 and fibrinogen fragments, formed into hydrogels by free-radical polymerization, and characterized by shear rheology.
View Article and Find Full Text PDFThe microenvironment plays a crucial role in the behavior of stem and progenitor cells. In the heart, cardiac progenitor cells (CPCs) reside in specific niches, characterized by key components that are altered in response to a myocardial infarction. To date, there is a lack of knowledge on these niches and on the CPC interplay with the niche components.
View Article and Find Full Text PDFFor emerging cardiac regeneration strategies, it is essential to know if and how cardiac stem cells sense and respond to the mechanical stimuli provided by their environment in the beating heart. Here, we study the response to cyclic strain of undifferentiated and predifferentiated human cardiomyocyte progenitor cells (CMPCs), as well as the formation and activation of the cellular structures involved in mechanosensing, that we termed 'mechanosome'. Once verified that the applied uniaxial cyclic strain (10%, 0.
View Article and Find Full Text PDFThe design of 3D scaffolds is a crucial step in the field of regenerative medicine. Scaffolds should be degradable and bioresorbable as well as display good porosity, interconnecting pores, and topographic features; these properties favour tissue integration and vascularization. These requirements could be fulfilled by hybrid hydrogels using a combination of natural and synthetic components.
View Article and Find Full Text PDFCardiomyocyte progenitor cells (CMPCs) are a candidate cell source for cardiac regenerative therapy. However, like other stem cells, after transplantation in the heart, cell retention and differentiation capacity of the CMPCs are low. Combining cells with biomaterials might overcome this problem.
View Article and Find Full Text PDFStem cells and regenerative medicine have obtained a remarkable consent from the scientific community for their promising ability to recover aged, injured and diseased tissue. However, despite the noteworthy potential, hurdles currently hinder their use and clinical application: cell survival, immune response, tissue engraftment and efficient differentiation. Hence a new interdisciplinary scientific approach, such as tissue engineering, is going deep attempts to mimic neo-tissue-genesis as well as stem cell engraftment amelioration.
View Article and Find Full Text PDF