Publications by authors named "Arianna Krinos"

Meta-omics is commonly used for large-scale analyses of microbial eukaryotes, including species or taxonomic group distribution mapping, gene catalog construction, and inference on the functional roles and activities of microbial eukaryotes in situ. Here, we explore the potential pitfalls of common approaches to taxonomic annotation of protistan meta-omic datasets. We re-analyze three environmental datasets at three levels of taxonomic hierarchy in order to illustrate the crucial importance of database completeness and curation in enabling accurate environmental interpretation.

View Article and Find Full Text PDF

Microeukaryotes are key contributors to marine carbon cycling. Their physiology, ecology, and interactions with the chemical environment are poorly understood in offshore ecosystems, and especially in the deep ocean. Using the Autonomous Underwater Vehicle Clio, microbial communities along a 1050 km transect in the western North Atlantic Ocean were surveyed at 10-200 m vertical depth increments to capture metabolic signatures spanning oligotrophic, continental margin, and productive coastal ecosystems.

View Article and Find Full Text PDF

Background: Protists, single-celled eukaryotic organisms, are critical to food web ecology, contributing to primary productivity and connecting small bacteria and archaea to higher trophic levels. Lake Mendota is a large, eutrophic natural lake that is a Long-Term Ecological Research site and among the world's best-studied freshwater systems. Metagenomic samples have been collected and shotgun sequenced from Lake Mendota for the last 20 years.

View Article and Find Full Text PDF

Marine protists and their metabolic activities are intricately tied to the cycling of nutrients and the flow of energy through microbial food webs. Physiochemical changes in the environment, such as those that result from mesoscale eddies, may impact protistan communities, but the effects that such changes have on protists are poorly known. A metatranscriptomic study was conducted to investigate how eddies affected protists at adjacent cyclonic and anticyclonic eddy sites in the oligotrophic ocean at four depths from 25 to 250 m.

View Article and Find Full Text PDF

Single-celled eukaryotes play ecologically significant roles in the marine environment, yet fundamental questions about their biodiversity, ecological function, and interactions remain. Environmental sequencing enables researchers to document naturally occurring protistan communities, without culturing bias, yet metagenomic and metatranscriptomic sequencing approaches cannot separate individual species from communities. To more completely capture the genomic content of mixed protistan populations, we can create bins of sequences that represent the same organism (metagenome-assembled genomes [MAGs]).

View Article and Find Full Text PDF

Many marine microbes require vitamin B (cobalamin) but are unable to synthesize it, necessitating reliance on other B-producing microbes. Thus, phytoplankton and bacterioplankton community dynamics can partially depend on the production and release of a limiting resource by members of the same community. We tested the impact of temperature and B availability on the growth of two bacterial taxa commonly associated with phytoplankton: Ruegeria pomeroyi, which produces B and fulfills the B requirements of some phytoplankton, and Alteromonas macleodii, which does not produce B but also does not strictly require it for growth.

View Article and Find Full Text PDF

Background: Diverse communities of microbial eukaryotes in the global ocean provide a variety of essential ecosystem services, from primary production and carbon flow through trophic transfer to cooperation via symbioses. Increasingly, these communities are being understood through the lens of omics tools, which enable high-throughput processing of diverse communities. Metatranscriptomics offers an understanding of near real-time gene expression in microbial eukaryotic communities, providing a window into community metabolic activity.

View Article and Find Full Text PDF

Amphibians host diverse skin bacteria that have a role in pathogen defense, but these skin communities could change over time and impact this function. Here, we monitored individual Eastern red-spotted newts (Notophthalmus viridescens; N = 17) for 2 years in a field pond enclosure and assessed the effects of season and disturbance on skin bacterial community dynamics. We created disturbances by adding additional pond substrate to the enclosure at two timepoints.

View Article and Find Full Text PDF

Gill chambers of the Atlantic lobster, Homarus americanus, possess three structures that are involved with respiration and ion regulation: gill filaments, epipodites, and branchiostegites. This paper describes ion transport mechanisms present in the plasma membranes of branchiostegite epithelial cells and the effects of pH on the uptake of Ca by these processes. Partially purified membrane vesicles (PPMV) of branchiostegite cells were produced by a homogenization/centrifugation method that has previously been used to define ion transport processes in both crab and lobster gill tissues.

View Article and Find Full Text PDF