Publications by authors named "Arianna Chesi"

We investigated the relevance of encapsulation in H-ferritin nanocages (HFn) in determining an improved tumor-targeted delivery of indocyanine green (ICG). Since from previous experiments, the administration of HFn loaded with ICG (HFn-ICG) resulted in an increased fluorescence signal of ICG, our aim was to uncover if the nanoformulation could have a major role in driving a specific targeting of the dye to the tumor or rather a protective action on ICG's fluorescence. Here, we took advantage of a combined analysis involving ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) on murine tissue homogenates matched with fluorescence intensities analysis detected by ex vivo optical imaging.

View Article and Find Full Text PDF

Due to its unique architecture and innate capability to specifically target cancer cells, ferritin has emerged as an attractive class of biomaterials for drug delivery. In many studies, various chemotherapeutics have been loaded into ferritin nanocages constituted by H-chains of ferritin (HFn), and their related anti-tumor efficacy has been explored by employing different strategies. Despite the multiple advantages and the versatility of HFn-based nanocages, there are still many challenges to face for their reliable implementation as drug nanocarriers in the process of clinical translation.

View Article and Find Full Text PDF

Human epidermal growth factor receptor-2 (HER-2) overexpressing breast cancer is a breast cancer subtype characterized by high aggressiveness, high frequency of brain metastases and poor prognosis. HER-2, a glycoprotein belonging to the ErbB receptor family, is overexpressed on the outer membrane of cancer cells and has been an important therapeutic target for the development of targeted drugs, such as the monoclonal antibodies trastuzumab and pertuzumab. These therapies have been available in clinics for more than twenty years.

View Article and Find Full Text PDF

Indocyanine green (ICG) is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, the molecule is prone to form aggregates in saline solution with a limited photostability and a moderate fluorescence yield. ICG was thus formulated using protein-based nanoparticles of H-ferritin (HFn) in order to generate a new nanostructure, HFn-ICG.

View Article and Find Full Text PDF