Publications by authors named "Arianna Bonizzi"

Background: The global demographic shift towards an aging population is generating a rise in neurodegenerative conditions, with Alzheimer's disease (AD) as the most prominent problem. In this landscape, the use of natural supplements has garnered attention for their potential in dementia prevention. Curcumin (Cur), derived from Curcuma longa, has demonstrated promising pharmacological effects against AD by reducing the levels of inflammatory mediators.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains challenging to diagnose, necessitating the identification of a noninvasive biomarker that can differentiate it from other conditions such as inflammatory bowel diseases (IBD) and diverticular disease (DD). Raman spectroscopy (RS) stands out as a promising technique for monitoring blood biochemical profiles, with the potential to identify distinct signatures identifying CRC subjects. We performed RS analysis on dried plasma from 120 subjects: 32 CRC patients, 37 IBD patients, 20 DD patients, and 31 healthy controls.

View Article and Find Full Text PDF

Background: A reliable preclinical model of patient-derived organoids (PDOs) was developed in a case study of a 69-year-old woman diagnosed with breast cancer (BC) to investigate the tumour evolution before and after neoadjuvant chemotherapy and surgery. The results were achieved due to the development of PDOs from tissues collected before (O-PRE) and after (O-POST) treatment.

Methods: PDO cultures were characterized by histology, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), confocal microscopy, flow cytometry, real-time PCR, bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) and drug screening.

View Article and Find Full Text PDF
Article Synopsis
  • Anthracyclines, notably doxorubicin (DOX), remain essential for breast cancer treatment despite the rise of targeted therapies, primarily due to their effectiveness in disrupting DNA replication in cancer cells.
  • However, DOX's non-specific action leads to severe side effects, necessitating an understanding of its impact on immune cells, particularly T cells, to preserve anti-tumor immunity during treatment.
  • The investigation revealed that a novel DOX formulation using ferritin nanocages (FerOX) can target tumors more effectively while minimizing the drug's cytotoxic effects on T cells, enhancing both anti-tumor efficacy and immune protection.
View Article and Find Full Text PDF

We investigated the relevance of encapsulation in H-ferritin nanocages (HFn) in determining an improved tumor-targeted delivery of indocyanine green (ICG). Since from previous experiments, the administration of HFn loaded with ICG (HFn-ICG) resulted in an increased fluorescence signal of ICG, our aim was to uncover if the nanoformulation could have a major role in driving a specific targeting of the dye to the tumor or rather a protective action on ICG's fluorescence. Here, we took advantage of a combined analysis involving ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) on murine tissue homogenates matched with fluorescence intensities analysis detected by ex vivo optical imaging.

View Article and Find Full Text PDF

Brain metastasis (BM) represents a clinical challenge for patients with advanced HER2 + breast cancer (BC). The monoclonal anti-HER2 antibody trastuzumab (TZ) improves survival of BC patients, but it has low central nervous system penetrance, being ineffective in treating BM. Previous studies showed that ferritin nanoparticles (HFn) may cross the blood brain barrier (BBB) through binding to the transferrin receptor 1 (TfR1).

View Article and Find Full Text PDF

Lipoproteins (LPs) are multimolecular complexes of lipids and proteins responsible for transporting fatty acids, cholesterol, and micronutrients (carotenoids) through the body. The quantification of triglycerides and cholesterol carried by lipoproteins is a leading clinical parameter to assess the increased risk of cardiovascular events. However, in recent times, the study of the overall "quality" of lipoproteins, defined by their biochemical composition and oxidation state, has emerged as necessary to improve the definition of the cardiovascular risk.

View Article and Find Full Text PDF

Due to its unique architecture and innate capability to specifically target cancer cells, ferritin has emerged as an attractive class of biomaterials for drug delivery. In many studies, various chemotherapeutics have been loaded into ferritin nanocages constituted by H-chains of ferritin (HFn), and their related anti-tumor efficacy has been explored by employing different strategies. Despite the multiple advantages and the versatility of HFn-based nanocages, there are still many challenges to face for their reliable implementation as drug nanocarriers in the process of clinical translation.

View Article and Find Full Text PDF

Biological nanoparticles, such as proteins and extracellular vesicles, are rapidly growing as nanobased drug-delivery agents due to their biocompatibility, high loading efficiency, and bioavailability. However, most of the candidates emerging preclinically hardly confirm their potential when entering clinical trials. Among other reasons, this is due to the low control of synthesis processes and the limited characterization of their potential immunoreactivity profiles.

View Article and Find Full Text PDF

Background: Bisdemethoxycurcumin (BDC) might be an inflammation inhibitor in Alzheimer's Disease (AD). However, BDC is almost insoluble in water, poorly absorbed by the organism, and degrades rapidly. We thus developed a new nanoformulation of BDC based on H-Ferritin nanocages (BDC-HFn).

View Article and Find Full Text PDF

Human epidermal growth factor receptor-2 (HER-2) overexpressing breast cancer is a breast cancer subtype characterized by high aggressiveness, high frequency of brain metastases and poor prognosis. HER-2, a glycoprotein belonging to the ErbB receptor family, is overexpressed on the outer membrane of cancer cells and has been an important therapeutic target for the development of targeted drugs, such as the monoclonal antibodies trastuzumab and pertuzumab. These therapies have been available in clinics for more than twenty years.

View Article and Find Full Text PDF

Protein nanocages have been studied extensively, due to their unique architecture, exceptional biocompatibility and highly customization capabilities. In particular, ferritin nanocages (FNs) have been employed for the delivery of a vast array of molecules, ranging from chemotherapeutics to imaging agents, among others. One of the main favorable characteristics of FNs is their intrinsic targeting efficiency toward the Transferrin Receptor 1, which is overexpressed in many tumors.

View Article and Find Full Text PDF

Background: Breast cancer Patient Derived Organoids (PDO) have been demonstrated to be a reliable model to study cancer that promised to replace and reduce the use of animals in pre-clinical research. They displayed concordance with the tissue of origin, resuming its heterogenicity and representing a good platform to develop approaches of personalized medicines. Although obtain PDOs from mammary tumour, was a very challenging process, several ongoing studies evaluated them as a platform to study efficacy, sensitivity and specificity of new drugs and exploited them in personalized medicine.

View Article and Find Full Text PDF

High-density lipoproteins (HDLs) represent a class of lipoproteins very heterogeneous in structure, composition, and biological functions, which carry out reverse cholesterol transport, antioxidant, anti-inflammatory, antithrombotic, and vasodilator actions. Despite the evidence suggesting a clear inverse relationship between HDL cholesterol (HDL-c) concentration and the risk for cardiovascular disease, plasma HDL cholesterol levels do not predict the functionality and composition of HDLs. The importance of defining both the amount of cholesterol transported and lipoprotein functionality has recently been highlighted.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are key actors in the context of the tumor microenvironment. Despite being reduced in number as compared to tumor cells, CAFs regulate tumor progression and provide protection from antitumor immunity. Emerging anticancer strategies aim to remodel the tumor microenvironment through the ablation of pro-tumorigenic CAFs or reprogramming of CAFs functions and their activation status.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a near infrared fluorescent tracer used in image-guided surgery to assist surgeons during resection. Despite appearing as a very promising tool for surgical oncology, its employment in this area is limited to lymph node mapping or to laparoscopic surgery, as it lacks tumor targeting specificity. Recently, a nanoformulation of this dye has been proposed with the aim toward tumor targeting specificity in order to expand its employment in surgical oncology.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are key actors in regulating cancer progression. They promote tumor growth, metastasis formation, and induce drug resistance. For these reasons, they are emerging as potential therapeutic targets.

View Article and Find Full Text PDF

Protein nanocages represent an emerging candidate among nanoscaled delivery systems. Indeed, they display unique features that proved to be very interesting from the nanotechnological point of view such as uniform structure, stability in biological fluids, suitability for surface modification to insert targeting moieties and loading with different drugs and dyes. However, one of the main concerns regards the production as recombinant proteins in , which leads to a product with high endotoxin contamination, resulting in nanocage immunogenicity and pyrogenicity.

View Article and Find Full Text PDF

Emerging evidence indicates that gut microbiota affect the response to anticancer therapies by modulating the host immune system. In this study, we investigated the impact of gut microbiota on immune-mediated trastuzumab antitumor efficacy in preclinical models of HER2-positive breast cancer and in 24 patients with primary HER2-positive breast cancer undergoing trastuzumab-containing neoadjuvant treatment. In mice, the antitumor activity of trastuzumab was impaired by antibiotic administration or fecal microbiota transplantation from antibiotic-treated donors.

View Article and Find Full Text PDF

Purpose: Assessment of inflammatory bowel disease (IBD) currently relies on aspecific clinical signs of bowel inflammation. Specific imaging of the diseased bowel regions is still lacking. Here, we investigate mucosal addressin cell adhesion molecule 1 (MAdCAM-1) as a reliable and specific endothelial target for engineered nanoparticles delivering imaging agents to obtain an exact mapping of diseased bowel foci.

View Article and Find Full Text PDF

Everolimus (Eve) is an immunosuppressive macrolide that is being analyzed in various biological matrices and fluids. Its antitumor activity makes this drug suitable not only for organ transplantation but also for breast cancer treatments. In the attempt to reduce the incidence and severity of its side effects, Eve was loaded in H-ferritin (HFn), a natural biomolecule that is involved in specific cellular uptake pathways.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a Food and Drug Administration-approved near-infrared fluorescent dye, employed as an imaging agent for different clinical applications due to its attractive physicochemical properties, high sensitivity, and safety. However, free ICG suffers from some drawbacks, such as relatively short circulation half-life, concentration-dependent aggregation, and rapid clearance from the body, which would confine its feasible application in oncology. Here, we aim to discuss encapsulation of ICG within a nanoparticle formulation as a strategy to overcome some of its current limitations and to enlarge its possible applications in cancer diagnosis and treatment.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a fluorescent dye with a strong emission in the near-infrared spectral range that allows deep signal penetration and minimal interference of tissue autofluorescence. It has been employed in clinics for different applications, among which the more interesting is certainly near-infrared fluorescence image-guided surgery. This technique has found wide application in surgical oncology for lymph node mapping or for laparoscopic surgery.

View Article and Find Full Text PDF

Everolimus (Eve) is an FDA approved drug that inhibits mammalian target of rapamycin (mTOR). It is employed in breast cancer treatment even if its responsiveness is controversial. In an attempt to increase Eve effectiveness, we have developed a novel Eve nanoformulation exploiting H-ferritin nanocages (HEve) to improve its subcellular delivery.

View Article and Find Full Text PDF