Proc Natl Acad Sci U S A
October 2017
WT p53 is critical for tumor suppression, whereas mutant p53 promotes tumor progression. Nerve injury-induced protein 1 (Ninj1) is a target of p53 and forms a feedback loop with p53 by repressing p53 mRNA translation. Here, we show that loss of increased mutant p53 expression and, subsequently, enhanced cell growth and migration in cells carrying a mutant p53.
View Article and Find Full Text PDFInositol 1,4,5-trisphosphate 3-kinase C (ITPKC) is the last identified member of the inositol 1,4,5-trisphosphate 3-kinases family which phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate. Although expression and function of the two other family members ITPKA and ITPKB are rather well characterized, similar information is lacking for ITPKC. Here, we first defined the expression of Itpkc mRNA and protein in mouse tissues and cells using in situ hybridization and new antibodies.
View Article and Find Full Text PDFPoly(C)-binding protein 4 (PCBP4), also called MCG10 and a target of p53, plays a role in the cell cycle and is implicated in lung tumor suppression. Here, we found that PCBP4-deficient mice are prone to lung adenocarcinoma, lymphoma, and kidney tumor and that PCBP4-deficient mouse embryo fibroblasts (MEFs) exhibit enhanced cell proliferation but decreased cellular senescence. We also found that p53 expression is markedly reduced in PCBP4-deficient MEFs and mouse tissues, suggesting that PCBP4 in turn regulates p53 expression.
View Article and Find Full Text PDFFour inositol phosphate kinases catalyze phosphorylation of the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3 ] to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4 ]: these enzymes comprise three isoenzymes of inositol 1,4,5-trisphosphate 3-kinase (Itpk), referred to as Itpka, Itpkb and Itpkc, and the inositol polyphosphate multikinase (IPMK). The four enzymes that act on Ins(1,4,5)P3 are all expressed in rat pheochromocytoma PC12 cells, a model that is used to study neurite outgrowth induced by nerve growth factor (NGF). We compared the effect of over-expression of the four GFP-tagged kinases on NGF-induced neurite outgrowth.
View Article and Find Full Text PDFRASA3 (or GTPase Activating Protein III, R-Ras GTPase-activating protein, GAP1(IP4BP)) is a GTPase activating protein of the GAP1 subfamily which targets Ras and Rap1. RASA3 was originally purified from pig platelet membranes through its intrinsic ability to bind inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with high affinity, hence its first name GAP1(IP4BP) (for GAP1 subfamily member which binds I(1,3,4,5)P4). RASA3 was thus the first I(1,3,4,5)P4 receptor identified and cloned.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) play a major role in many post-transcriptional processes, including mRNA stability, alternative splicing and translation. PCBP4, also called MCG10, is an RBP belonging to the poly(C)-binding protein family and a target of p53 tumor suppressor. Ectopic expression of PCBP4 induces cell-cycle arrest in G₂ and apoptosis.
View Article and Find Full Text PDFMol Cell Pharmacol
January 2010
G protein-coupled receptors (GPRs) constitute one of the largest families of membrane proteins encoded by the human genome. Upon binding to various ligands, these seven-transmembrane receptors play an essential role in many physiological processes, including neurotransmission, immunity, inflammation, regulation of mood and behavior. In view of their important functions, aberrant expression and activity of GPRs have been implicated in a wide spectrum of diseases, including tumorigenesis.
View Article and Find Full Text PDFOverexpression of mutant p53 is a common theme in human tumors, suggesting a tumor-promoting gain-of-function for mutant p53. To elucidate whether and how mutant p53 acquires its gain-of-function, mutant p53 is inducibly knocked down in the SW480 colon cancer cell line, which contains mutant p53(R273H/P309S), and the MIA PaCa-2 pancreatic cancer cell line, which contains mutant p53(R248W). We found that knockdown of mutant p53 markedly inhibits cell proliferation.
View Article and Find Full Text PDFThe lysine-specific demethylase 1 (LSD1), a component of several histone deacetylase complexes, plays an important role in chromatin remodeling and transcriptional regulation. Here, we generated multiple cell lines in which LSD1 is inducibly expressed or knocked down and found that LSD1 is required for cell proliferation. In addition, we found that deficiency in LSD1 leads to a partial cell cycle arrest in G(2)/M and sensitizes cells to growth suppression induced by DNA damage or MDM2 inhibition in a p53-dependent manner.
View Article and Find Full Text PDFThe epithelial cell transforming sequence 2 (ECT2), a member of the Dbl family of guanine nucleotide exchange factor for Rho GTPases, is required for cytokinesis. The tumor suppressor p53 plays a crucial role in coordinating cellular processes, such as cell cycle arrest and apoptosis, in response to stress signals. Here, we showed that ECT2 is negatively regulated by wild-type p53 but not tumor-derived mutant p53 or other p53 family members.
View Article and Find Full Text PDFThe p53 tumor suppressor is a modular transcription factor that determines cellular outcome (cell cycle arrest and DNA repair vs. apoptosis) in response to stress signals. The two p53 homologues, p63 and p73 play an important role in development but also act as tumor suppressors.
View Article and Find Full Text PDFPrimary human endothelial cells have a finite life span in vitro. After 3-4 passages, they tend to de-differentiate and eventually reach senescence. This limits their use in studies of endothelial cell function.
View Article and Find Full Text PDF