Spondyloarthritis (SpA) is a group of diseases primarily involving chronic inflammation of the spine and peripheral joints, as evaluated by magnetic resonance imaging (MRI). Considering the complexity of SpA, we performed a retrospective study to discover quantitative/radiomic MRI-based features correlated with SpA. We also investigated different fat-suppression MRI techniques to develop detection models for inflammatory sacroiliitis.
View Article and Find Full Text PDFPurpose: To evaluate the performance of texture-based biomarkers by radiomic analysis using magnetic resonance imaging (MRI) of patients with sacroiliitis secondary to spondyloarthritis (SpA).
Relevance: The determination of sacroiliac joints inflammatory activity supports the drug management in these diseases.
Methods: Sacroiliac joints (SIJ) MRI examinations of 47 patients were evaluated.
Background: Currently, magnetic resonance imaging (MRI) is used to evaluate active inflammatory sacroiliitis related to axial spondyloarthritis (axSpA). The qualitative and semiquantitative diagnosis performed by expert radiologists and rheumatologists remains subject to significant intrapersonal and interpersonal variation. This encouraged us to use machine-learning methods for this task.
View Article and Find Full Text PDFThe discipline of radiology and diagnostic imaging has evolved greatly in recent years. We have observed an exponential increase in the number of exams performed, subspecialization of medical fields, and increases in accuracy of the various imaging methods, making it a challenge for the radiologist to "know everything about all exams and regions". In addition, imaging exams are no longer only qualitative and diagnostic, providing now quantitative information on disease severity, as well as identifying biomarkers of prognosis and treatment response.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2020
Purpose: As some of the most important factors for treatment decision of lung cancer (which is the deadliest neoplasm) are staging and histology, this work aimed to associate quantitative contrast-enhanced computed tomography (CT) features from malignant lung tumors with distant and nodal metastases (according to clinical TNM staging) and histopathology (according to biopsy and surgical resection) using radiomics assessment.
Methods: A local cohort of 85 patients were retrospectively (2010-2017) analyzed after approval by the institutional research review board. CT images acquired with the same protocol were semiautomatically segmented by a volumetric segmentation method.