Publications by authors named "Ariane Khaledi"

Flagella are multiprotein complexes whose assembly and positioning require complex spatiotemporal control. Flagellar assembly is thought to be controlled by several transcriptional tiers, which are mediated through various master regulators. Here, we revisited the regulation of flagellar genes in polarly flagellated gammaproteobacteria by the regulators FlrA, RpoN (σ ) and FliA (σ ) in Shewanella putrefaciens CN-32 at the transcript and protein level.

View Article and Find Full Text PDF
Article Synopsis
  • Evaluating metagenomic software is crucial for enhancing the interpretation of metagenomes, and the CAMI II challenge focused on this by using complex datasets from numerous genomes and plasmids.
  • The analysis of 5,002 results from 76 software versions showed significant advancements in assembly, especially with long-read data, although challenges remained with related strains and genome recovery.
  • Findings indicated that while taxon profilers improved, they struggled with viruses and Archaea, highlighting the need for better reproducibility in clinical pathogen detection and guiding researchers in method selection based on efficiency and performance metrics.
View Article and Find Full Text PDF

Extensive use of next-generation sequencing has the potential to transform our knowledge on how genomic variation within bacterial species impacts phenotypic versatility. Because different environments have unique selection pressures, they drive divergent evolution. However, there is also parallel or convergent evolution of traits in independent bacterial isolates inhabiting similar environments.

View Article and Find Full Text PDF

Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates.

View Article and Find Full Text PDF

is a major public health concern all around the world. In the frame of this work, a set of diverse environmental isolates with various antibiotic resistance profiles were examined in a virulence model. Motility, serotypes, virulence factors and biofilm-forming ability were also examined.

View Article and Find Full Text PDF

Systems biology approaches address the challenge of translating sequence information into function. In this study, we described the Pseudomonas aeruginosa PA14 proteomic landscape and quantified environment-driven changes in protein levels by the use of LC-MS techniques. Previously recorded mRNA data allowed a comparison of RNA to protein ratios for each individual gene and, thus, to explore the relationship between an mRNA being differentially expressed between environmental conditions and the mRNA-protein correlation for that gene.

View Article and Find Full Text PDF

Extensive use of next-generation sequencing (NGS) for pathogen profiling has the potential to transform our understanding of how genomic plasticity contributes to phenotypic versatility. However, the storage of large amounts of NGS data and visualization tools need to evolve to offer the scientific community fast and convenient access to these data. We introduce BACTOME as a database system that links aligned DNA- and RNA-sequencing reads of clinical Pseudomonas aeruginosa isolates with clinically relevant pathogen phenotypes.

View Article and Find Full Text PDF

causes a substantial number of nosocomial infections and is the leading cause of death of cystic fibrosis patients. This Gram-negative bacterium is highly resistant against antibiotics and further protects itself by forming a biofilm. Moreover, a high genomic variability among clinical isolates complicates therapy.

View Article and Find Full Text PDF

Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins.

View Article and Find Full Text PDF

Unlabelled: Phenotypic variability among bacteria depends on gene expression in response to different environments, and it also reflects differences in genomic structure. In this study, we analyzed transcriptome sequencing (RNA-seq) profiles of 151 Pseudomonas aeruginosa clinical isolates under standard laboratory conditions and of one P. aeruginosa type strain under 14 different environmental conditions.

View Article and Find Full Text PDF

Up to 20% of the chromosomal Pseudomonas aeruginosa DNA belong to the so-called accessory genome. Its elements are specific for subgroups or even single strains and are likely acquired by horizontal gene transfer (HGT). Similarities of the accessory genomic elements to DNA from other bacterial species, mainly the DNA of γ- and β-proteobacteria, indicate a role of interspecies HGT.

View Article and Find Full Text PDF