Publications by authors named "Ariane Kanicki"

Unlabelled: The vestibular short-latency evoked potential (VsEP) reflects the activity of irregular vestibular afferents and their target neurons in the brain stem. Attenuation of trial-averaged VsEP waveforms is widely accepted as an indicator of vestibular dysfunction, however, more quantitative analyses of VsEP waveforms could reveal underlying neural properties of VsEP waveforms. Here, we present a time-frequency analysis of the VsEP with a wavelet transform on a single-trial basis, which allows us to examine trial-by-trial variability in the strength of VsEP waves as well as their temporal coherence across trials.

View Article and Find Full Text PDF

Many factors contribute to hearing loss commonly found in older adults. There can be natural aging of cellular elements, hearing loss previously induced by environmental factors such as noise or ototoxic drugs as well as genetic and epigenetic influences. Even when noise overstimulation does not immediately cause permanent hearing loss it has recently been shown to increase later age-related hearing loss (ARHL).

View Article and Find Full Text PDF

Slc44a2 is reported to interact with tetraspanins CD9 and CD81. To investigate how Slc44a2 affects adhesion protein expression, cells from wild-type (WT) Slc44a2+/+, heterozygous (HET) Slc44a2+/-, and knockout (KO) Slc44a2-/- mice were cultured from lung tissue. The cultured cells expressed vimentin, N-cadherin, p120 catenin, beta-catenin, actin, CD9, and CD81, but not E-cadherin.

View Article and Find Full Text PDF

Our previous study demonstrated rapamycin added to diet at 4 months of age had significantly less age-related outer hair cell loss in the basal half of the cochlea at 22 months of age compared to mice without rapamycin. The present study tested adding rapamycin to diet later in life, at 14 months of age, and added a longitudinal assessment of auditory brain stem response (ABR). The present study used UMHET4 mice, a 4 way cross in which all grandparental strains lack the Cdh23 allele that predisposes to early onset, progressive hearing loss.

View Article and Find Full Text PDF

Introduction: The vestibular system is essential for normal postural control and balance. Because of their proximity to the cochlea, the otolith organs are vulnerable to noise. We previously showed that head jerks that evoke vestibular nerve activity were no longer capable of inducing a response after noise overstimulation.

View Article and Find Full Text PDF

A noise-induced loss of inner hair cell (IHC) - auditory nerve synaptic connections has been suggested as a factor that can trigger the progression of maladaptive plastic changes leading to noise-induced tinnitus. The present study used a military relevant small arms fire (SAF)-like noise (50 biphasic impulses over 2.5 min at 152 dB SPL given unilaterally to the right ear) to induce loss (∼1/3) of IHC synaptic ribbons (associated with synapse loss) in rat cochleae with only minor (less than 10%) loss of outer hair cells.

View Article and Find Full Text PDF

The vestibular system plays a critical role in detection of head movements and is essential for normal postural control. Because of their anatomical proximity to the cochlea, the otolith organs are selectively exposed to sound pressure and are at risk for noise overstimulation. Clinical reports suggest a link between noise exposure and balance problems, but the structural and physiological basis for this linkage is not well understood.

View Article and Find Full Text PDF

In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT).

View Article and Find Full Text PDF

SLC44A2 (solute carrier 44a2), also known as CTL2 (choline transporter-like protein 2), is expressed in many supporting cell types in the cochlea and is implicated in hair cell survival and antibody-induced hearing loss. In mice with the mixed C57BL/6-129 background, homozygous deletion of Slc44a2 exons 3–10 (Slc44a2(Δ/Δ)resulted in high-frequency hearing loss and hair cell death. To reduce effects associated with age-related hearing loss (ARHL) in these strains, mice carrying the Slc44a2Δ allele were backcrossed to the ARHL-resistant FVB/NJ strain and evaluated after backcross seven(N7) (99 % FVB).

View Article and Find Full Text PDF

Cyclodextrins are sugar compounds that are increasingly finding medicinal uses due to their ability to complex with hydrophobic molecules. One cyclodextrin in particular, 2-hydroxypropyl-β-cyclodextrin (HPβCD), is used as a carrier to solubilize lipophilic drugs and is itself being considered as a therapeutic agent for treatment of Niemann-Pick Type C disease, due to its ability to mobilize cholesterol. Results from toxicological studies suggest that HPβCD is generally safe, but a recent study has found that it causes hearing loss in cats.

View Article and Find Full Text PDF
Article Synopsis
  • This study reveals that macrophage migration inhibitory factor (MIF) is crucial for early nerve growth in the inner ear of mice and chicks.
  • MIF, released by the developing otocyst, promotes the outgrowth and survival of neurons from the statoacoustic ganglion and is found in both developing and adult inner ear tissues.
  • Knockout mice lacking MIF show hearing impairment and abnormal nerve connections, emphasizing MIF's significant role in neural development.
View Article and Find Full Text PDF

Oxidative stress has been linked to noise- and drug-induced as well as age-related hearing loss. Antioxidants can attenuate the decline of cochlear structure and function after exposure to noise or drugs, but it is debated as to whether they can protect from age-related hearing loss. In a long-term longitudinal study, 10-month-old female CBA/J mice were placed on either a control or antioxidant-enriched diet and monitored through 24 months of age.

View Article and Find Full Text PDF

The auditory sensory epithelium in non-mammalian vertebrates can replace lost hair cells by transdifferentiation of supporting cells, but this regenerative ability is lost in the mammalian cochlea. Future cell-based treatment of hearing loss may depend on stem cell transplantation or on transdifferentiation of endogenous cells in the cochlea. For both approaches, identification of cells with stem cell features within the mature cochlea may be useful.

View Article and Find Full Text PDF

Commercially obtained aged male CBA/J mice presented a complex pattern of hearing loss and morphological changes. A significant threshold shift in auditory brainstem responses (ABR) occurred at 3 months of age at 4 kHz without apparent loss of hair cells, rising slowly at later ages accompanied by loss of apical hair cells. A delayed high-frequency deficit started at 24 kHz around the age of 12 months.

View Article and Find Full Text PDF

In mammals, exposure to intense noise produces a permanent hearing loss called permanent threshold shift (PTS), whereas a moderate noise produces only a temporary threshold shift (TTS). Little is known about the molecular responses to such high intensity noise exposures. In this study we used gene arrays to examine the early response to acoustic overstimulation in the rat cochlea.

View Article and Find Full Text PDF

The genes for heat shock proteins (Hsps) can be upregulated in response to cellular trauma, resulting in enhanced cell survival and protection. Hsp32, also known as heme oxygenase 1, catalyzes the degradation of heme to produce carbon monoxide and bilirubin, which play a variety of cytoprotective functions at physiological concentrations, and iron, which is rapidly sequestered by the iron-binding protein ferritin. In the present study we examined the expression and localization of Hsp32 in the rat cochlea after heat shock using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunocytochemistry.

View Article and Find Full Text PDF

Activation of heat shock factors (Hsfs) is one of the potential mechanisms for regulating the transcription of the heat shock proteins (Hsps) and certain other stress-responsive genes. Reverse transcription polymerase chain reaction (RT-PCR), Western blot and immunocytochemistry were used to examine the expression and localization of Hsf1, the stress-responsive member of the Hsf family, in the rat and mouse cochlea. Cerebellum was used as a positive control.

View Article and Find Full Text PDF