Publications by authors named "Ariane De Agostini"

Mucopolysaccharidosis IIIA is a hereditary disease caused by mutations in the sulfamidase enzyme that participates in catabolism of heparan sulfate (HS), leading to HS fragment accumulation and multisystemic failure. No cure exists and death occurs around the second decade of life. Two low molecular weight highly sulfated compounds derived from marine diabolican and infernan exopolysaccharides (A5_3 and A5_4, respectively) with heparanase inhibiting properties were tested in a MPSIIIA cell line model, resulting in limited degradation of intracellular HS.

View Article and Find Full Text PDF

Multisystem inflammatory syndrome in children (MIS-C) represents a rare but severe complication of severe acute respiratory syndrome coronavirus 2 infection affecting children that can lead to myocardial injury and shock. Vascular endothelial dysfunction has been suggested to be a common complicating factor in patients with coronavirus disease 2019 (COVID-19). This study aims to characterize endothelial glycocalyx degradation in children admitted with MIS-C.

View Article and Find Full Text PDF

To evaluate a new approach to Mucopolysaccharidosis type IIIA (MPS-IIIA), work was initiated on primary fibroblasts from a well-known mouse model in which sulfamidase deficiency correlates with the accumulation of heparan sulfate - the hallmark of this disease. Once the culture of fibroblasts was established, we observed continuous proliferation with a rapid growth rate, loss of contact inhibition and late passage stability, corresponding to a spontaneously immortalized cell line. The presence of the single point D31N mutation was verified and both rapid and abundant intracellular accumulation of low molecular weight HS was observed, confirming both genotype and phenotype.

View Article and Find Full Text PDF

This review comes as a part of the special issue "Emerging frontiers in GAGs and mimetics". Our interest is in the manipulation of heparan sulfate (HS) turnover by employing HS mimetics/heparin derivatives that exert pleiotropic effects and are interesting for interfering at multiple levels with pathways in which HS is implicated. Due to the important role of heparanase in HS post-biosynthetic modification and catabolism, we focus on the possibility to target heparanase, at both extracellular and intracellular levels, a strategy that can be applied to many conditions, from inflammation to cancer and neurodegeneration.

View Article and Find Full Text PDF

A nutraceutical is defined as a standardized pharmaceutical-grade nutrient. Among hundreds of nutraceuticals, polysaccharide or glycan-based products such as those containing chondroitin sulfate glycosaminoglycan isolated from animal cartilage have been on the top nutraceutical selling list for many years. It is expected that the nutraceutical market will reach $250 billion dollars worldwide by 2018.

View Article and Find Full Text PDF

Most β-d-xylosides with hydrophobic aglycones are nontoxic primers for glycosaminoglycan assembly in animal cells. However, when Ebselen was conjugated to d-xylose, d-glucose, d-galactose, and d-lactose (8A-D), only Ebselen β-d-xyloside (8A) showed significant cytotoxicity in human cancer cells. The following facts indicated that the aglycone Ebselen and β-d-xyloside primed glycosaminoglycans co-contributed to the observed cytotoxicity: 1.

View Article and Find Full Text PDF

Background/aim: Low-molecular-weight heparin (LMWH) has been suggested to reduce the risk of cancer progression in both preclinical and clinical studies but the underlying mechanisms remain poorly explored. The aim of the study was to investigate the anti-metastatic role of enoxaparin, a clinically-used LMWH, in a murine model of colon cancer and to explore its underlying mechanisms.

Materials And Methods: Using a reproducible mouse model of colon carcinomas, we assessed the capacity of enoxaparin, a LMWH, to affect tumor metastasis of colon carcinoma cell lines in mice.

View Article and Find Full Text PDF

Vascular endothelial cells (ECs) produce anticoagulant heparan sulfate (HSAT+)-a small subpopulation of heparan sulfate (HS) containing a specific pentasaccharide motif with high affinity for plasma antithrombin (AT). This pentasaccharide is responsible for the anticoagulant action of therapeutic heparin, which dramatically catalyzes AT neutralization of coagulation proteases. Consequently, HSAT+ has been designated as "anticoagulant HS," and has long been thought to convey antithrombotic properties to the blood vessel wall.

View Article and Find Full Text PDF

Background: Externalization of phosphatidylserine (EPS) occurs in apoptotic-like spermatozoa and could be used to remove them from sperm preparations to enhance sperm quality for assisted medical procreation. We first characterized EPS in sperms from infertile patients in terms of frequency of EPS spermatozoa as well as localization of phosphatidylserine (PS) on spermatozoa. Subsequently, we determined the impact of depleting EPS spermatozoa on sperm quality.

View Article and Find Full Text PDF

Anticoagulant heparan sulfate proteoglycans bind and activate antithrombin by virtue of a specific 3-O-sulfated pentasaccharide. They not only occur in the vascular wall but also in extravascular tissues, such as the ovary, where their functions remain unknown. The rupture of the ovarian follicle at ovulation is one of the most striking examples of tissue remodeling in adult mammals.

View Article and Find Full Text PDF

Major tissue remodelling occurs in hormone responsive tissues of the female genital tract, at ovulation and during gestation, involving proteolysis and inflammation. Disorders of tissue remodelling events are associated with infertility in women with luteinized unruptured follicle syndrome and with gestational pathologies as preeclampsia. Ovulation impairment is an important factor of infertility and a major concern in reproductive medicine.

View Article and Find Full Text PDF

Endothelial and other select cell types synthesize a subpopulation of heparan sulfate (HS) proteoglycans (HSPGs), anticoagulant HSPGs (aHSPGs) that bear aHS-HS chains with the cognate 3-O-sulfated pentasaccharide motif that can bind and activate anti-thrombin (AT). Endothelial cells regulate aHSPG production by limiting levels of HS 3-O-sulfotransferase-1 (3-OST-1), which modifies a non-limiting pool of aHS-precursors. By probing kidney cryosections with (125)I-AT and fluorescently tagged AT we found that the glomerular basement membrane contains aHSPGs, with the staining pattern implicating synthesis by glomerular epithelial cells (GECs).

View Article and Find Full Text PDF

Heparan sulfate that contains antithrombin binding sites is designated as anticoagulant heparan sulfate (HS(act)) since, in vitro, it dramatically enhances the neutralization of coagulation proteases by antithrombin. Endothelial cell production of HS(act) is controlled by the Hs3st1 gene, which encodes the rate limiting enzyme-heparan sulfate 3-O-sulfotransferase-1 (Hs3st1). It has long been proposed that levels of endothelial HS(act) may tightly regulate hemostatic tone.

View Article and Find Full Text PDF

Endothelial cell production of anticoagulant heparan sulfate (HS(act)) is controlled by the Hs3st1 gene, which encodes the rate-limiting enzyme heparan sulfate 3-O-sulfotransferase-1 (3-OST-1). In vitro, HS(act) dramatically enhances the neutralization of coagulation proteases by antithrombin. The in vivo role of HS(act) was evaluated by generating Hs3st1(-/-) knockout mice.

View Article and Find Full Text PDF

In recent years, progress in the fields of development and proteoglycan biology have produced converging evidence of the role of proteoglycans in morphogenesis. Numerous studies have demonstrated that proteoglycans are involved in several distinct morphogenetic pathways upon which they act at different levels. In particular, proteoglycans can determine the generation of morphogen gradients and be required for their signal transduction.

View Article and Find Full Text PDF

During the reproductive cycle, ovarian follicles undergo major tissue-remodeling involving vascular changes and proteolysis. Anticoagulant heparan sulfate proteoglycans (aHSPGs) are expressed by granulosa cells during the development of the ovarian follicle. The function of aHSPGs in the ovary is unknown, but they might be involved in proteolysis control through binding and activation of serine protease inhibitors.

View Article and Find Full Text PDF