Individuals, typically, are exposed to mixtures of environmental xenobiotics affecting multiple organs and acting through different xenosensors and pathways in species and cell-type specific manners. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and α-endosulfan are Persistent Organic Pollutants (POPs) and endocrine disruptors which act through different xenosensors and accumulate in the liver. Our objective in this HEALS study was to investigate the effects of the mixture of these POPs on gene expression in a human-derived hepatocyte cell line, HepaRG.
View Article and Find Full Text PDFThe contribution of environmental pollutants to liver fibrosis is an important and poorly explored issue. In vitro studies suggest that the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) ligands induce several genes that are known to be upregulated during liver fibrosis. Our aim was to determine whether exposure to such pollutants can lead to liver fibrosis and to characterize the mechanisms of action.
View Article and Find Full Text PDFTCDD (2,3,7,8-tetrachlorodibenzodioxin), a highly persistent environmental pollutant and a human carcinogen, is the ligand with the highest affinity for the Aryl Hydrocarbon Receptor (AhR) that induces via the AhR, xenobiotic metabolizing enzyme genes as well as several other genes. This pollutant elicits a variety of systemic toxic effects, which include cancer promotion and diverse cellular alterations that modify cell cycle progression and cell proliferation. Large-scale studies have shown that the expression of Son of Sevenless 1 (SOS1), the main mediator of Ras activation, is one of the targets of dioxin in human cultured cells.
View Article and Find Full Text PDF2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental pollutant that binds the aryl hydrocarbon receptor (AhR), a transcription factor that triggers various biological responses. In this study, we show that TCDD treatment counteracts the p53 activation (phosphorylation and acetylation) elicited by a genotoxic compound, etoposide, in the human hepatocarcinoma cell line HepG2 and we delineated the mechanisms of this interaction. Using small interfering RNA knockdown experiments, we found that the newly described metastasis marker, anterior gradient-2 (AGR2), is involved in this effect.
View Article and Find Full Text PDF