Electroactive yarns that are stretchable are desired for many electronic textile applications, including energy storage, soft robotics, and sensing. However, using current methods to produce these yarns, achieving high loadings of electroactive materials and simultaneously demonstrating stretchability is a critical challenge. Here, a one-step bath electrospinning technique is developed to effectively capture Ti C T MXene flakes throughout continuous nylon and polyurethane (PU) nanofiber yarns (nanoyarns).
View Article and Find Full Text PDFFree-standing films that display high strength and high electrical conductivity are critical for flexible electronics, such as electromagnetic interference (EMI) shielding coatings and current collectors for batteries and supercapacitors. 2D Ti C T flakes are ideal candidates for making conductive films due to their high strength and metallic conductivity. It is, however, challenging to transfer those outstanding properties of single MXene flakes to macroscale films as a result of the small flake size and relatively poor flake alignment that occurs during solution-based processing.
View Article and Find Full Text PDFIEEE Antennas Wirel Propag Lett
April 2020
Researchers are looking for new methods to integrate sensing capabilities into textiles while maintaining the durability, flexibility, and comfort of the garment. One method for imparting sensing capabilities into garments is through coupling conductive yarns with the radio frequency identification (RFID) technology. These smart devices have exhibited promising results for short-term use.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
TiCT MXene has exhibited great potential for use in wearable devices, especially as pressure sensors, due to its lamellar structure, which changes its resistance as a function of interlayer distance. Despite the good performance of the reported pure MXene pressure sensors, their practical applications are limited by moderate flexibility, excessively high MXene conductivity, and environmental effects. To address the above challenges, we incorporated multilayer MXene particles into hydrophobic poly(vinylidene fluoride) trifluoroethylene (P(VDF-TrFE)) and prepared freestanding, flexible, and stable films via spin-coating.
View Article and Find Full Text PDFIET Microw Antennas Propag
February 2020
Flexible antennas have the potential to transform wearable and fabric-based wireless sensing technologies. The antenna discussed in this study is part of a sensing system that uses the back-scattered power level as the decision metric. For a good wireless sensor, it is necessary to offer a feasible read range and maintain good distinctions in the back-scattered power levels between the different states (i.
View Article and Find Full Text PDFYarn-shaped supercapacitors (YSCs) once integrated into fabrics provide promising energy storage solutions to the increasing demand of wearable and portable electronics. In such device format, however, it is a challenge to achieve outstanding electrochemical performance without compromising flexibility. Here, MXene-based YSCs that exhibit both flexibility and superior energy storage performance by employing a biscrolling approach to create flexible yarns from highly delaminated and pseudocapacitive MXene sheets that are trapped within helical yarn corridors are reported.
View Article and Find Full Text PDFUntil now, MXenes could only be produced from MAX phases containing aluminum, such as Ti AlC . Here, we report on the synthesis of Ti C (MXene) through selective etching of silicon from titanium silicon carbide-the most common MAX phase. Liters of colloidal solutions of delaminated Ti SiC -derived MXene (0.
View Article and Find Full Text PDFHigher ordered structures of nanofibers, including nanofiber-based yarns and cables, have a variety of potential applications, including wearable health monitoring systems, artificial tendons, and medical sutures. In this study, twisted assemblies of polyacrylonitrile (PAN), polyvinylidene fluoride trifluoroethylene (PVDF-TrFE), and polycaprolactone (PCL) nanofibers were fabricated via a modified electrospinning setup, consisting of a rotating cone-shaped copper collector, two syringe pumps, and two high voltage power supplies. The fiber diameters and twist angles varied as a function of the rotary speed of the collector.
View Article and Find Full Text PDFDiisocyanates, commonly used in the production of polyurethane foams, paints, elastomers, varnishes, and coatings, are considered among the most hazardous inhalation toxicants. The present report describes 2 unusual cases of mortality in pigeon chicks associated with nesting material contaminated by diisocyanates. Case 1 was submitted by a racing pigeon breeder who had lost all the hatchlings (n = 125) following replacement of the nesting material with a different lot.
View Article and Find Full Text PDF