Causal control of short- and long-range projections between networks is necessary to study complex cognitive processes and cortical computations. Neural circuits can be studied via optogenetic approaches, which provide excellent genetic and temporal control and electrophysiological recordings. However, in nonhuman primates (NHPs), these approaches are commonly performed at a single location, missing out on the potential to test connections between separate networks.
View Article and Find Full Text PDFTo produce adaptive behavior, neural networks must balance between plasticity and stability. Computational work has demonstrated that network stability requires plasticity mechanisms to be counterbalanced by rapid compensatory processes. However, such processes have yet to be experimentally observed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Our perception of the environment relies on the efficient propagation of neural signals across cortical networks. During the time course of a day, neural responses fluctuate dramatically as the state of the brain changes to possibly influence how electrical signals propagate across neural circuits. Despite the importance of this issue, how patterns of spiking activity propagate within neuronal circuits in different brain states remains unknown.
View Article and Find Full Text PDFOne influential view in neuroscience is that pairwise cell interactions explain the firing patterns of large populations. Despite its prevalence, this view originates from studies in the retina and visual cortex of anesthetized animals. Whether pairwise interactions predict the firing patterns of neurons across multiple brain areas in behaving animals remains unknown.
View Article and Find Full Text PDFCortical inactivation represents a key causal manipulation allowing the study of cortical circuits and their impact on behavior. A key assumption in inactivation studies is that the neurons in the target area become silent while the surrounding cortical tissue is only negligibly impacted. However, individual neurons are embedded in complex local circuits composed of excitatory and inhibitory cells with connections extending hundreds of microns.
View Article and Find Full Text PDFIn visual areas of primates, neurons activate in parallel while the animal is engaged in a behavioral task. In this study, we examine the structure of the population code while the animal performs delayed match-to-sample tasks on complex natural images. The macaque monkeys visualized two consecutive stimuli that were either the same or different, while being recorded with laminar arrays across the cortical depth in cortical areas V1 and V4.
View Article and Find Full Text PDFWe propose a new model of the read-out of spike trains that exploits the multivariate structure of responses of neural ensembles. Assuming the point of view of a read-out neuron that receives synaptic inputs from a population of projecting neurons, synaptic inputs are weighted with a heterogeneous set of weights. We propose that synaptic weights reflect the role of each neuron within the population for the computational task that the network has to solve.
View Article and Find Full Text PDFVisual stimuli evoke heterogeneous responses across nearby neural populations. These signals must be locally integrated to contribute to perception, but the principles underlying this process are unknown. Here, we exploit the systematic organization of orientation preference in macaque primary visual cortex (V1) and perform causal manipulations to examine the limits of signal integration.
View Article and Find Full Text PDFThe accurate relay of electrical signals within cortical networks is key to perception and cognitive function. Theoretically, it has long been proposed that temporal coordination of neuronal spiking activity controls signal transmission and behavior. However, whether and how temporally precise neuronal coordination in population activity influences perception are unknown.
View Article and Find Full Text PDF