To further the development of an in vitro model which faithfully recapitulates drug disposition of orally administered drugs, we investigated the utility of human enteroid monolayers to simultaneously assess intestinal drug absorption and first-pass metabolism processes. We cultured human enteroid monolayers from three donors, derived via biopsies containing duodenal stem cells that were propagated and then differentiated atop permeable Transwell® inserts, and confirmed transformation into a largely enterocyte population via RNA-seq analysis and immunocytochemical (ICC) assays. Proper cell morphology was assessed and confirmed via bright field microscopy and ICC imaging of tight junction proteins and other apically and basolaterally localized proteins.
View Article and Find Full Text PDFThe intestine has important gate-keeping functions that can profoundly affect the systemic blood exposure of orally administered drugs. Thus, characterizing a new molecular entity's (NME) disposition within the intestine is of utmost importance in drug development. While currently used in vitro systems, such as Ussing chamber, precision-cut intestinal slices, immortalized cell lines, and primary enterocytes provide substantial knowledge about drug absorption and the intestinal first-pass effect, they remain sub-optimal for quantitatively predicting this process and the oral bioavailability of many drugs.
View Article and Find Full Text PDFThe botanical natural product goldenseal can precipitate clinical drug interactions by inhibiting cytochrome P450 (CYP) 3A and CYP2D6. Besides P-glycoprotein, effects of goldenseal on other clinically relevant transporters remain unknown. Established transporter-expressing cell systems were used to determine the inhibitory effects of a goldenseal extract, standardized to the major alkaloid berberine, on transporter activity.
View Article and Find Full Text PDFNaturally occurring hepatitis C virus (HCV) infection has long been thought to induce a weak immunity which is insufficient to protect an individual from subsequent infections and has cast doubt on the ability to develop effective vaccines. A series of intrahepatic genetic inoculations (IHGI) with type 1a HCV RNA were performed in a chimpanzee to determine whether a form of genetic immunization might stimulate protective immunity. We demonstrate that the chimpanzee not only developed protective immunity to the homologous type 1a RNA after rechallenge by IHGI but was also protected from chronic HCV infection after sequential rechallenge with 100 50% chimpanzee infectious doses of a heterologous type 1a (H77) and 1b (HC-J4) whole-virus inoculum.
View Article and Find Full Text PDFThe immunology of hepatitis C virus (HCV) infection should be studied in the context of HCV antigen expression in the liver, because HCV primarily infects this organ. Indeed, the nature, function, and fate of T cells primed after antigen expression in the liver might differ from those primed when antigens are expressed systemically or in other organs, because the nature of the antigen-presenting cells (APCs) involved may be different. In addition, the normal liver contains a resident population of lymphocytes that differ from those present at other sites.
View Article and Find Full Text PDF