Publications by authors named "Arian Aghilinejad"

Radial applanation tonometry is a well-established technique for hemodynamic monitoring and is becoming popular in affordable non-invasive wearable healthcare electronics. To assess the central aortic pressure using radial-based measurements, there is an essential need to develop mathematical approaches to estimate the central pressure waveform. In this study, we propose a new Fourier-based machine learning (F-ML) methodology to transfer non-invasive radial pressure measurements to the central pressure waveform.

View Article and Find Full Text PDF

Aims: The ageing process notably induces structural changes in the arterial system, primarily manifesting as increased aortic stiffness, a precursor to cardiovascular events. While wave separation analysis is a robust tool for decomposing the components of blood pressure waveform, its relationship with cardiovascular events, such as aortic stiffening, is incompletely understood. Furthermore, its applicability has been limited due to the need for concurrent measurements of pressure and flow.

View Article and Find Full Text PDF

Age-related changes in aortic biomechanics can impact the brain by reducing blood flow and increasing pulsatile energy transmission. Clinical studies have shown that impaired cardiac function in patients with heart failure is associated with cognitive impairment. Although previous studies have attempted to elucidate the complex relationship between age-associated aortic stiffening and pulsatility transmission to the cerebral network, they have not adequately addressed the effect of interactions between aortic stiffness and left ventricle (LV) contractility (neither on energy transmission nor on brain perfusion).

View Article and Find Full Text PDF

This study investigates the physics of the longitudinal stretching-based wave pumping mechanism, a novel extension of the traditional impedance pump. In its simplest form, an impedance pump consists of a fluid-filled elastic tube connected to rigid tubes with a wave generator. These valveless pumps operate based on the principles of wave propagation in a fluid-filled compliant tube.

View Article and Find Full Text PDF

Type B aortic dissection is a life-threatening medical emergency that can result in rupture of the aorta. Due to the complexity of patient-specific characteristics, only limited information on flow patterns in dissected aortas has been reported in the literature. Leveraging the medical imaging data for patient-specific in vitro modeling can complement the hemodynamic understanding of aortic dissections.

View Article and Find Full Text PDF

Objective: The clinical significance of the wave intensity (WI) analysis for the diagnosis and prognosis of the cardiovascular and cerebrovascular diseases is well-established. However, this method has not been fully translated into clinical practice. From practical point of view, the main limitation of WI method is the need for concurrent measurements of both pressure and flow waveforms.

View Article and Find Full Text PDF

In-vitro models of the systemic circulation have gained a lot of interest for fundamental understanding of cardiovascular dynamics and for applied hemodynamic research. In this study, we introduce a physiologically accurate in-vitro hydraulic setup that models the hemodynamics of the coupled atrioventricular-aortic system. This unique experimental simulator has three major components: 1) an arterial system consisting of a human-scale artificial aorta along with the main branches, 2) an artificial left ventricle (LV) sac connected to a programmable piston-in-cylinder pump for simulating cardiac contraction and relaxation, and 3) an artificial left atrium (LA).

View Article and Find Full Text PDF

Thoracic endovascular aortic repair (TEVAR) is a commonly performed operation for patients with type B aortic dissection (TBAD). The goal of TEVAR is to cover the proximal entry tear between the true lumen (TL) and the false lumen (FL) with an endograft to induce FL thrombosis, allow for aortic healing, and decrease the risk of aortic aneurysm and rupture. While TEVAR has shown promising outcomes, it can also result in devastating complications including stroke, spinal cord ischemia resulting in paralysis, as well as long-term heart failure, so treatment remains controversial.

View Article and Find Full Text PDF

Intrinsic Frequency (IF) is a systems-based approach that provides valuable information for hemodynamic monitoring of the left ventricle (LV), the arterial system, and their coupling. Recent clinical studies have demonstrated the clinical significance of this method for prognosis and diagnosis of cardiovascular diseases. In IF analysis, two dominant instantaneous frequencies (ω and ω) are extracted from arterial pressure waveforms.

View Article and Find Full Text PDF

Wave intensity (WI) analysis is a well-established method for quantifying the energy carried in arterial waves, providing valuable clinical information about cardiovascular function. The primary drawback of this method is the need for concurrent measurements of both pressure and flow waveforms..

View Article and Find Full Text PDF

Aortic stiffness increases with age and is a robust predictor of brain pathology including Alzheimer's and other dementias. Aging causes disproportionate stiffening of the aorta compared with the carotid arteries, reducing protective impedance mismatches at their interface and affecting transmission of destructive pulsatile energy to the cerebral circulation. Recent clinical studies have measured regional stiffness within the aortic arch using pulse wave velocity (PWV) and have found a stronger association with cerebrovascular events than global stiffness measures.

View Article and Find Full Text PDF

Recent studies showed that wave intensity analysis (WIA) provides clinically valuable information about local and global cardiovascular function. Wave intensity (WI) is computed as the product of the pressure change and the velocity change during short time intervals. The major limitation of WIA in clinical practice is the need for invasive pressure measurement.

View Article and Find Full Text PDF

Deterministic lateral displacement (DLD), which takes advantage of the asymmetric bifurcation of laminar flow around the embedded microposts, has shown promising capabilities in separating cells and particles of different sizes. Growing interest in utilizing high-throughput DLD devices for practical applications, such as circulating tumor cell separation, necessitates employing higher flow rates in these devices, leading to operating in moderate to high Reynolds number () regimes. Despite extensive research on DLD devices in the creeping regime, limited research has focused on the physics of flow, critical size of the device, and deformable cell behavior in DLD devices at moderate to high .

View Article and Find Full Text PDF

Detection and analysis of circulating tumor cells (CTCs) have emerged as a promising way to diagnose cancer, study its cellular mechanism, and test or develop potential treatments. However, the rarity of CTCs among peripheral blood cells is a big challenge toward CTC detection. In addition, in cases where there is similar size range between certain types of CTCs (e.

View Article and Find Full Text PDF

Insulator-based dielectrophoresis (iDEP) is a powerful technique for separation and manipulation of bioparticles. In recent years, iDEP designs using arrays of insulating posts have shown promising results toward reaching high-efficiency bioparticle manipulation. Joule heating (JH) and electrothermal (ET) flows have been observed in iDEP microdevices and significantly affecting their performances.

View Article and Find Full Text PDF