Monitoring the progression of Alzheimer's disease (AD) is crucial for mitigating dementia symptoms, alleviating pain, and improving mobility. Traditionally, AD biomarkers like amyloid plaques are predominantly identified in cerebrospinal fluid (CSF) due to their concentrated presence. However, detecting these markers in blood is hindered by the blood-brain barrier (BBB), resulting in lower concentrations.
View Article and Find Full Text PDFDespite a substantial increase in testing facilities during the pandemic, access remains a major obstacle, particularly in low-resource and remote areas. This constraint emphasizes the need for high-throughput potential point-of-care diagnostic tools in environments with limited resources. Loop-mediated isothermal amplification (LAMP) is a promising technique, but improvements in sensitivity are needed for accurate detection, especially in scenarios where the virus is present in low quantities.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) and RNA-dependent RNA polymerase (RdRP) genes were detected via electrochemical measurements using a screen-printed carbon electrode (SPCE) (3-electrode system) coupled with a battery-operated thin-film heater based on the loop-mediated isothermal amplification (LAMP) technique. The working electrodes of the SPCE sensor were decorated with synthesized gold nanostars (AuNSs) to obtain a large surface area and improve sensitivity. The LAMP assay was enhanced using a real-time amplification reaction system to detect the optimal target genes (E and RdRP) of SARS-CoV-2.
View Article and Find Full Text PDFLactate is an important organic molecule that is produced in excess during anaerobic metabolism when oxygen is absent in the human organism. The concentration of this substance in the body can be related to several medical conditions, such as hemorrhage, respiratory failure, and ischemia. Herein, we describe a graphene-based lactate biosensor to detect the concentrations of L-lactic acid in different fluids (buffer solution and plasma).
View Article and Find Full Text PDFWe report an electrochemical biosensor combined with recombinase polymerase amplification (RPA) for rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2. The electrochemical biosensor based on a multi-microelectrode array allows the detection of multiple target genes by differential pulse voltammetry. The RPA reaction involves hybridization of the RPA amplicon with thiol-modified primers immobilized on the working electrodes, which leads to a reduction of current density as amplicons accumulate.
View Article and Find Full Text PDFFlexible electronics can be developed with a low-cost and simple fabrication process while being environmentally friendly. Conductive silver inks have been the most applied material in flexible substrates. This study evaluated the performance of different conductive ink formulations using silver nanoparticles by studying the material properties, the inkjet printing process, and application based on electrical impedance spectroscopy using a buffer solution.
View Article and Find Full Text PDFGraphene-based transistors are promising devices in the evaluation of carrier density in biological analytes. We report on the design and fabrication of a graphene-based field-effect transistor for monitoring and assessing the interaction between the coagulation factors based on the charge carrier density in a blood sample. When biochemical reactions occurred during the coagulation cascade process, a dopant effect was noticed on the graphene surface by the change in Dirac point voltage values.
View Article and Find Full Text PDF