Publications by authors named "Ari-Pekka J Huovila"

Objective: The single nucleotide polymorphism (SNP) rs2995300 in the metalloproteinase-disintegrin gene ADAM8 has been shown to affect the areas of complicated coronary plaques and the risk of fatal myocardial infarction (MI) in men. This study was set up to further investigate the role of ADAM8 in MI.

Aim: To investigate the possible association of the ADAM8 SNPs rs2995300 and rs2275725 with ADAM8 mRNA levels, serum soluble ADAM8 (sADAM8) concentrations, and MI risk.

View Article and Find Full Text PDF

A Disintegrin And Metalloprotease (ADAM15) is a member of the adamalysin protein family and has been associated with cancer, possibly via its role in ectodomain shedding of cadherins. Alternative mRNA splicing generates several ADAM15 isoforms containing different combinations of putative Src homology-3 (SH3) domain binding sites in their cytosolic tails. Here we present a comprehensive characterization of SH3 binding potential of different ADAM15 isoforms.

View Article and Find Full Text PDF
Article Synopsis
  • The study identified the gene ADAM8 as being significantly involved in atherosclerosis after scanning all 23,000 human genes for differential expression between normal and atherosclerotic tissues.
  • Research indicated that ADAM8 mRNA and protein levels were elevated in atherosclerotic tissues compared to non-atherosclerotic arteries, particularly within macrophages and smooth muscle cells.
  • Carriers of the G allele of the ADAM8 2662 T/G SNP displayed larger areas of complex atherosclerotic plaques and a higher risk of myocardial infarction compared to those with the TT genotype.
View Article and Find Full Text PDF

Background And Aims: The expression of disintegrin and metalloprotease ADAM-9, ADAM-15, and ADAM-17 has been associated with cell-cell, cell-platelet, and cell-matrix interactions and inflammation. They are possibly implicated in the pathophysiology of atherosclerosis.

Methods And Results: Whole-genome expression array and quantitative real-time polymerase chain reaction (PCR) analysis confirmed that ADAM-9, ADAM-15, and ADAM-17 are upregulated in advanced human atherosclerotic lesions in samples from carotid, aortic, and femoral territories compared to samples from internal thoracic artery (ITA) free of atherosclerotic plaques.

View Article and Find Full Text PDF

Background: ADAM15 is a metalloprotease-disintegrin implicated in ectodomain shedding and cell adhesion. Aberrant ADAM15 expression has been associated with human cancer and other disorders. We have previously shown that the alternative splicing of ADAM15 transcripts is mis-regulated in cancer cells.

View Article and Find Full Text PDF

ADAM metalloproteinase disintegrins have emerged as the major proteinase family that mediates ectodomain shedding, the proteolytic release of extracellular domains from their membrane-bound precursors. Recent gene-manipulation studies have established the role of ADAM-mediated shedding in mammalian physiology and, in addition, raised the issue of functional redundancy among ADAM sheddases. ADAM sheddases activate, for example, growth factors and cytokines, thus regulating signalling pathways that are important in development and pathological processes such as cancer.

View Article and Find Full Text PDF

ADAM genes have been associated with cancer, with ADAM expression, genomic rearrangements, and, by implication of ADAM proteins in the altered behavior found in tumor cells. In the present study, increased copy number of the ADAM15 gene in human breast cancer cell lines was demonstrated by fluorescence in situ hybridization. This was not reflected in mRNA levels, however.

View Article and Find Full Text PDF