'Intuitive physics' enables our pragmatic engagement with the physical world and forms a key component of 'common sense' aspects of thought. Current artificial intelligence systems pale in their understanding of intuitive physics, in comparison to even very young children. Here we address this gap between humans and machines by drawing on the field of developmental psychology.
View Article and Find Full Text PDFBuilding artificial intelligence (AI) that aligns with human values is an unsolved problem. Here we developed a human-in-the-loop research pipeline called Democratic AI, in which reinforcement learning is used to design a social mechanism that humans prefer by majority. A large group of humans played an online investment game that involved deciding whether to keep a monetary endowment or to share it with others for collective benefit.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2014
Recent work has reawakened interest in goal-directed or 'model-based' choice, where decisions are based on prospective evaluation of potential action outcomes. Concurrently, there has been growing attention to the role of hierarchy in decision-making and action control. We focus here on the intersection between these two areas of interest, considering the topic of hierarchical model-based control.
View Article and Find Full Text PDFInferring the mental states of other agents, including their goals and intentions, is a central problem in cognition. A critical aspect of this problem is that one cannot observe mental states directly, but must infer them from observable actions. To study the computational mechanisms underlying this inference, we created a two-dimensional virtual environment populated by autonomous agents with independent cognitive architectures.
View Article and Find Full Text PDF