Publications by authors named "Ari P Seitsonen"

Article Synopsis
  • The study uses ab initio simulations to analyze 2400 molten NaCl particles, focusing on how collective modes behave outside the hydrodynamic regime.
  • Researchers explore why the speed of sound in NaCl significantly increases with wave number, exceeding the typical sound dispersion found in simple liquids.
  • By comparing NaCl's acoustic and optic modes to other ionic melts and alloys, the study reveals that the high-frequency optic branch strongly influences the "fast sound" phenomenon seen in binary melts, resulting in a speed of sound that is more than double its adiabatic value.
View Article and Find Full Text PDF

Transmetalation represents an appealing strategy toward fabricating and tuning functional metal-organic polymers and frameworks for diverse applications. In particular, building two-dimensional metal-organic and organometallic networks affords versatile nanoarchitectures of potential interest for nanodevices and quantum technology. The controlled replacement of embedded metal centers holds promise for exploring versatile material varieties by serial modification and different functionalization.

View Article and Find Full Text PDF

Graphyne (GY) and graphdiyne (GDY)-based monolayers represent the next generation 2D carbon-rich materials with tunable structures and properties surpassing those of graphene. However, the detection of band formation in atomically thin GY/GDY analogues has been challenging, as both long-range order and atomic precision have to be fulfilled in the system. The present work reports direct evidence of band formation in on-surface synthesized metallated Ag-GDY sheets with mesoscopic (≈1 µm) regularity.

View Article and Find Full Text PDF

Complex phenomena characterize the intercalation of ions inside stratified crystals. Their comprehension is crucial in view of exploiting the intercalation mechanism to change the transport properties of the crystal or obtaining a fine control of crystal delamination. In particular, the relationship between the concentration and nature of intercalated ions and surface structural modifications of the host stratified crystal is still under debate.

View Article and Find Full Text PDF

The growth of graphene and hexagonal boron nitride on hot transition metal surfaces involves the adsorption of precursor molecules, and their dissociation and assembly into two-dimensional honeycomb lattices. In a recent account it was found that h-BN may be distilled on a rhodium metal surface, which yields higher quality h-BN [Cun , , 2020, , 1351]. In this context, we calculated in a systematic approach the adsorption energies and sites of hydrogen, boron, carbon, nitrogen, and oxygen atoms and from the site dependence the activation energy for diffusion.

View Article and Find Full Text PDF

One of the fundamental quantities in dynamics of the liquid state, the adiabatic speed of sound [Formula: see text], is extremely difficult to predict from computer simulations, especially in ab initio simulations. Here we derive an expression for the instantaneous correlator of fluctuations of longitudinal component of stress tensor, which contains [Formula: see text] along with others quantities easy accessible via classical and ab initio computer simulations. We show that the proposed methodology works well in the case of Lennard-Jones and soft-sphere simple fluids, Kr-Ar liquid mixture in connection with simulations with effective pair interactions as well as for liquid Sb, fluid Hg and molten NaCl from ab initio simulations.

View Article and Find Full Text PDF

Defect engineering in two-dimensional materials expands the realm of their applications in catalysis, nanoelectronics, sensing, and beyond. As limited tools are available to explore nanoscale functional properties in non-vacuum environments, theoretical modeling provides some invaluable insight into the effect of local deformations to deepen the understanding of experimental signals acquired by nanoscale chemical imaging. We demonstrate the controlled creation of nanoscale strained defects in hexagonal boron nitride (h-BN) using atomic force microscopy and infrared (IR) light under an inert environment.

View Article and Find Full Text PDF

The production of high-quality hexagonal boron nitride (h-BN) is essential for the ultimate performance of 2D materials-based devices, since it is the key 2D encapsulation material. Here, a decisive guideline is reported for fabricating high-quality h-BN on transition metals. It is crucial to exclude carbon from the h-BN related process, otherwise carbon prevails over boron and nitrogen due to its larger binding energy, thereupon forming graphene on metals after high-temperature annealing.

View Article and Find Full Text PDF

Ru-porphyrins act as convenient pedestals for the assembly of N-heterocyclic carbenes (NHCs) on solid surfaces. Upon deposition of a simple NHC ligand on a close packed Ru-porphyrin monolayer, an extraordinary phenomenon can be observed: Ru-porphyrin molecules are transferred from the silver surface to the next molecular layer. We have investigated the structural features and dynamics of this portering process and analysed the associated binding strengths and work function changes.

View Article and Find Full Text PDF

Applying strong direct current (DC) electric fields on the apex of a sharp metallic tip, electrons can be radially emitted from the apex to vacuum. Subsequently, they magnify the nanoscopic information on the apex, which serves as a field emission microscope (FEM). When depositing molecules on such a tip, peculiar electron emission patterns such as clover leaves appear.

View Article and Find Full Text PDF

We assess the crucial role of tetrapyrrole flexibility in the CO ligation to distinct Ru-porphyrins supported on an atomistically well-defined Ag(111) substrate. Our systematic real-space visualisation and manipulation experiments with scanning tunnelling microscopy directly probe the ligation, while bond-resolving atomic force microscopy and X-ray standing-wave measurements characterise the geometry, X-ray and ultraviolet photoelectron spectroscopy the electronic structure, and temperature-programmed desorption the binding strength. Density-functional-theory calculations provide additional insight into the functional interface.

View Article and Find Full Text PDF

Iron silicide (FeSi) is a fascinating material that has attracted extensive research efforts for decades, notably revealing unusual temperature-dependent electronic and magnetic characteristics, as well as a close resemblance to the Kondo insulators whereby a coherent picture of intrinsic properties and underlying physics remains to be fully developed. For a better understanding of this narrow-gap semiconductor, we prepared and examined FeSi(110) single-crystal surfaces of high quality. Combined insights from low-temperature scanning tunneling microscopy and density functional theory calculations (DFT) indicate an unreconstructed surface termination presenting rows of Fe-Si pairs.

View Article and Find Full Text PDF

The controlled arrangement of N-heterocyclic carbenes (NHCs) on solid surfaces is a current challenge of surface functionalization. We introduce a strategy of using Ru porphyrins in order to control both the orientation and lateral arrangement of NHCs on a planar surface. The coupling of the NHC to the Ru porphyrin is a facile process which takes place on the interface: we apply NHCs as functional, robust pillars on well-defined, preassembled Ru porphyrin monolayers on silver and characterize these interfaces with atomic precision via a battery of experimental techniques and theoretical considerations.

View Article and Find Full Text PDF

The structure of a cyclic peptide with important biological functionalities, cyclosporin A (CsA), is investigated at the single molecule level. Its adsorption on Cu(111) under ultra-high vacuum is characterised with scanning tunnelling microscopy (STM) and density functional theory. With STM investigations, we demonstrate element specific on-surface coordination schemes of CsA with coadsorbed K, Co and Fe atoms.

View Article and Find Full Text PDF

The data presented here concern the photophysical characterization of luminescent MCM-41 nanoparticles doped with 3-hydroxyflavone and 7-hydroxyflavone, two fluorescent flavonoids. UV-Vis and fluorescence spectra obtained on freshly-prepared samples and aged (2 months exposed to air) samples are shown. The effect of light exposure is also studied.

View Article and Find Full Text PDF

The stability of magnetic information stored in surface adsorbed single-molecule magnets is of critical interest for applications in nanoscale data storage or quantum computing. The present study combines X-ray magnetic circular dichroism, density functional theory and magnetization dynamics calculations to gain deep insight into the substrate dependent relevant magnetization relaxation mechanisms. X-ray magnetic circular dichroism reveals the opening of a butterfly-shaped magnetic hysteresis of DyPc molecules on magnesium oxide and a closed loop on the bare silver substrate, while density functional theory shows that the molecules are only weakly adsorbed in both cases of magnesium oxide and silver.

View Article and Find Full Text PDF

Extended organometallic honeycomb alkynyl-silver networks have been synthesized on a noble metal surface under ultrahigh vacuum conditions via a gas-mediated surface reaction protocol. Specifically, the controlled exposure to molecular oxygen efficiently deprotonates terminal alkyne moieties of 1,3,5-tris(4-ethynylphenyl)benzene (Ext-TEB) precursors adsorbed on Ag(111). At T = 200 K, this O-mediated reaction pathway features high chemoselectivity without poisoning the surface.

View Article and Find Full Text PDF

Phosphorene is a new 2D material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct bandgap and high carrier mobility values, which make it suitable for a large variety of optical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge.

View Article and Find Full Text PDF

There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood.

View Article and Find Full Text PDF

By means of scanning tunnelling microscopy (STM), complementary density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) we investigate the binding and self-assembly of a saturated molecular layer of model -heterocyclic carbene (NHC) on Cu(111), Ag(111) and Au(111) surfaces under ultra-high vacuum (UHV) conditions. XPS reveals that at room temperature, coverages up to a monolayer exist, with the molecules engaged in metal carbene bonds. On all three surfaces, we resolve similar arrangements, which can be interpreted only in terms of mononuclear M(NHC) (M = Cu, Ag, Au) complexes, reminiscent of the paired bonding of thiols to surface gold adatoms.

View Article and Find Full Text PDF

Interfacial supramolecular self-assembly represents a powerful tool for constructing regular and quasicrystalline materials. In particular, complex two-dimensional molecular tessellations, such as semi-regular Archimedean tilings with regular polygons, promise unique properties related to their nontrivial structures. However, their formation is challenging, because current methods are largely limited to the direct assembly of precursors, that is, where structure formation relies on molecular interactions without using chemical transformations.

View Article and Find Full Text PDF

Metallo-supramolecular engineering on surfaces provides a powerful strategy toward low-dimensional coordination architectures with prospects for several application fields. To date, most efforts have relied on transition metal centers, and only recently did we pioneer lanthanide-directed assembly. Coordination spheres and motifs with rare-earth elements generally display distinct properties and structural features.

View Article and Find Full Text PDF

Atomically thin hexagonal boron nitride (h-BN) layers on metallic supports represent a promising platform for the selective adsorption of atoms, clusters, and molecular nanostructures. Specifically, scanning tunneling microscopy (STM) studies revealed an electronic corrugation of h-BN/Cu(111), guiding the self-assembly of molecules and their energy level alignment. A detailed characterization of the h-BN/Cu(111) interface including the spacing between the h-BN sheet and its support-elusive to STM measurements-is crucial to rationalize the interfacial interactions within these systems.

View Article and Find Full Text PDF

We report on the surface-guided synthesis of a dinuclear organocobalt complex, its self-assembly into a complex nanoarchitecture, and a single-molecule level investigation of its switching behavior. Initially, an organic layer is prepared by depositing hexakis((trimethylsilyl)ethynyl)-benzene under ultrahigh-vacuum conditions onto Ag(111). After Co dosage at 200 K, low-temperature scanning tunneling microscopy (STM) reveals an epitaxy-mediated organization mechanism of molecules and on-surface formed organometallic complexes.

View Article and Find Full Text PDF

The chemistry of aluminum or oxo-aluminum in water is still relatively unknown, although it is the basis for many chemical and industrial processes, including flocculation in water treatment plants. Trimeric species have a predominant role in the formation of the Keggin cations, which are the basic building blocks of aluminum-based chemicals. Despite this, details of the structural evolution of these small solvated clusters and how this is related to the processes leading to the formation of larger aggregates are still an open issue.

View Article and Find Full Text PDF