Publications by authors named "Ari Laaksonen"

Water vapor is continuously adsorbed onto and desorbed from all kinds of surfaces depending on changes in relative humidity. Adsorption-desorption hysteresis of water that occurs on various nonporous surfaces and extends down to low relative humidities has been reported for decades, but remains unexplained. Here we show experimentally that such hysteresis is a common phenomenon on metal oxide and mineral surfaces and can be divided into two distinct categories based on the wettability of the adsorbent surface.

View Article and Find Full Text PDF

Heterogeneous ice nucleation is a ubiquitous process in the natural and built environment. Deposition ice nucleation, heterogeneous ice nucleation that - according to the traditional view - occurs in a subsaturated water vapor environment and in the absence of supercooled water on the solid, ice-forming surface, is among the most important ice formation processes in high-altitude cirrus and mixed-phase clouds. Despite its importance, very little is known about the mechanism of deposition ice nucleation at the microscopic level.

View Article and Find Full Text PDF

African desert dust is emitted and long-range transported with multiple effects on climate, air quality, cryosphere, and ecosystems. On 21-23 February 2021, dust from a sand and dust storm in northern Africa was transported to Finland, north of 60°N. The episode was predicted 5 days in advance by the global operational SILAM forecast, and its key features were confirmed and detailed by a retrospective analysis.

View Article and Find Full Text PDF

The gas-phase formation of new particles less than 1 nm in size and their subsequent growth significantly alters the availability of cloud condensation nuclei (CCN, >30-50 nm), leading to impacts on cloud reflectance and the global radiative budget. However, this growth cannot be accounted for by condensation of typical species driving the initial nucleation. Here, we present evidence that nucleated iodine oxide clusters provide unique sites for the accelerated growth of organic vapors to overcome the coagulation sink.

View Article and Find Full Text PDF

We determine the annual timing of spring recovery from space-borne microwave radiometer observations across northern hemisphere boreal evergreen forests for 1979-2014. We find a trend of advanced spring recovery of carbon uptake for this period, with a total average shift of 8.1 d (2.

View Article and Find Full Text PDF

The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface.

View Article and Find Full Text PDF

In addition to climate warming, greater herbivore pressure is anticipated to enhance the emissions of climate-relevant biogenic volatile organic compounds (VOCs) from boreal and subarctic forests and promote the formation of secondary aerosols (SOA) in the atmosphere. We evaluated the effects of Epirrita autumnata, an outbreaking geometrid moth, feeding and larval density on herbivore-induced VOC emissions from mountain birch in laboratory experiments and assessed the impact of these emissions on SOA formation via ozonolysis in chamber experiments. The results show that herbivore-induced VOC emissions were strongly dependent on larval density.

View Article and Find Full Text PDF
Article Synopsis
  • * Model simulations indicate that these biogenic particles significantly increased cloud condensation nuclei (CCN) concentrations in the preindustrial era, leading to a greater cooling effect on the climate due to higher cloud albedo.
  • * The research suggests that the overall impact of human-made aerosols on climate may be less than previously thought because of the substantial role of natural processes, highlighting the need for more research on these natural aerosol formation mechanisms.
View Article and Find Full Text PDF

About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across.

View Article and Find Full Text PDF

Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role.

View Article and Find Full Text PDF

The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions.

View Article and Find Full Text PDF

Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form.

View Article and Find Full Text PDF

Vapor interaction with solid surfaces is traditionally described with adsorption isotherms in the undersaturated regime and with heterogeneous nucleation theory in the supersaturated regime. A class of adsorption isotherms is based on the idea of vapor molecule clustering around so-called active sites. However, as the isotherms do not account for the surface curvature effects of the clusters, they predict an infinitely thick adsorption layer at saturation and do not recognize the existence of the supersaturated regime.

View Article and Find Full Text PDF

Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleation theorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleation theorem invoke certain questionable assumptions that may fail, e.

View Article and Find Full Text PDF

We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base.

View Article and Find Full Text PDF

For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions.

View Article and Find Full Text PDF

Aerosol liquid water (ALW) influences aerosol radiative properties and the partitioning of gas-phase water-soluble organic compounds (WSOCg) to the condensed phase. A recent modeling study drew attention to the anthropogenic nature of ALW in the southeastern United States, where predicted ALW is driven by regional sulfate. Herein, we demonstrate that ALW in the Po Valley, Italy, is also anthropogenic but is driven by locally formed nitrate, illustrating regional differences in the aerosol components responsible for ALW.

View Article and Find Full Text PDF

Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere.

View Article and Find Full Text PDF

Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research.

View Article and Find Full Text PDF
Article Synopsis
  • Nucleation of aerosol particles from trace atmospheric vapors contributes significantly to cloud condensation nuclei, potentially cooling the climate by enhancing cloud properties.
  • Recent studies indicate that traditional explanations, like sulfuric acid and ammonia, are insufficient to explain observed particle formation rates, prompting exploration of amines.
  • Using the CLOUD chamber at CERN, researchers found that dimethylamine vastly improves particle formation rates through a stabilization mechanism, suggesting a need to reevaluate how human activities affect aerosol formation in the atmosphere.
View Article and Find Full Text PDF

Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter.

View Article and Find Full Text PDF

This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES).

View Article and Find Full Text PDF

The formation of new atmospheric aerosol particles and their subsequent growth have been observed frequently at various locations all over the world. The atmospheric nucleation rate (or formation rate) and growth rate (GR) are key parameters to characterize the phenomenon. Recent progress in measurement techniques enables us to measure atmospheric nucleation at the size (mobility diameter) of 1.

View Article and Find Full Text PDF

Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia.

View Article and Find Full Text PDF