From sequences of discrete events, humans build mental models of their world. Referred to as graph learning, the process produces a model encoding the graph of event-to-event transition probabilities. Recent evidence suggests that some networks are easier to learn than others, but the neural underpinnings of this effect remain unknown.
View Article and Find Full Text PDFCommun Psychol
January 2025
How do people model the world's dynamics to guide mental simulation and evaluate choices? One prominent approach, the Successor Representation (SR), takes advantage of temporal abstraction of future states: by aggregating trajectory predictions over multiple timesteps, the brain can avoid the costs of iterative, multi-step mental simulation. Human behavior broadly shows signatures of such temporal abstraction, but finer-grained characterization of individuals' strategies and their dynamic adjustment remains an open question. We developed a task to measure SR usage during dynamic, trial-by-trial learning.
View Article and Find Full Text PDFHumans are exposed to sequences of events in the environment, and the interevent transition probabilities in these sequences can be modeled as a graph or network. Many real-world networks are organized hierarchically and while much is known about how humans learn basic transition graph topology, whether and to what degree humans can learn hierarchical structures in such graphs remains unknown. We probe the mental estimates of transition probabilities via the surprisal effect phenomenon: humans react more slowly to less expected transitions.
View Article and Find Full Text PDFLarge-scale interactions among multiple brain regions manifest as bursts of activations called neuronal avalanches, which reconfigure according to the task at hand and, hence, might constitute natural candidates to design brain-computer interfaces (BCIs). To test this hypothesis, we used source-reconstructed magneto/electroencephalography during resting state and a motor imagery task performed within a BCI protocol. To track the probability that an avalanche would spread across any two regions, we built an avalanche transition matrix (ATM) and demonstrated that the edges whose transition probabilities significantly differed between conditions hinged selectively on premotor regions in all subjects.
View Article and Find Full Text PDFHumans are constantly exposed to sequences of events in the environment. Those sequences frequently evince statistical regularities, such as the probabilities with which one event transitions to another. Collectively, inter-event transition probabilities can be modeled as a graph or network.
View Article and Find Full Text PDFAnimals frequently make decisions based on expectations of future reward ("values"). Values are updated by ongoing experience: places and choices that result in reward are assigned greater value. Yet, the specific algorithms used by the brain for such credit assignment remain unclear.
View Article and Find Full Text PDFSchizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic abnormalities in schizophrenia.
View Article and Find Full Text PDFChronic pain affects more than 50 million Americans. Treatments remain inadequate, in large part, because the pathophysiological mechanisms underlying the development of chronic pain remain poorly understood. Pain biomarkers could potentially identify and measure biological pathways and phenotypical expressions that are altered by pain, provide insight into biological treatment targets, and help identify at-risk patients who might benefit from early intervention.
View Article and Find Full Text PDFHuman experience is built upon sequences of discrete events. From those sequences, humans build impressively accurate models of their world. This process has been referred to as graph learning, a form of structure learning in which the mental model encodes the graph of event-to-event transition probabilities [1], [2], typically in medial temporal cortex [3]-[6].
View Article and Find Full Text PDFChronic pain has become a global health problem contributing to years lived with disability and reduced quality of life. Advances in the clinical management of chronic pain have been limited due to incomplete understanding of the multiple risk factors and molecular mechanisms that contribute to the development of chronic pain. The Acute to Chronic Pain Signatures (A2CPS) Program aims to characterize the predictive nature of biomarkers (brain imaging, high-throughput molecular screening techniques, or "omics," quantitative sensory testing, patient-reported outcome assessments and functional assessments) to identify individuals who will develop chronic pain following surgical intervention.
View Article and Find Full Text PDFHumans deftly parse statistics from sequences. Some theories posit that humans learn these statistics by forming cognitive maps, or underlying representations of the latent space which links items in the sequence. Here, an item in the sequence is a node, and the probability of transitioning between two items is an edge.
View Article and Find Full Text PDFHumans are adept at uncovering abstract associations in the world around them, yet the underlying mechanisms remain poorly understood. Intuitively, learning the higher-order structure of statistical relationships should involve complex mental processes. Here we propose an alternative perspective: that higher-order associations instead arise from natural errors in learning and memory.
View Article and Find Full Text PDFObjective: Predicting how the brain can be driven to specific states by means of internal or external control requires a fundamental understanding of the relationship between neural connectivity and activity. Network control theory is a powerful tool from the physical and engineering sciences that can provide insights regarding that relationship; it formalizes the study of how the dynamics of a complex system can arise from its underlying structure of interconnected units.
Approach: Given the recent use of network control theory in neuroscience, it is now timely to offer a practical guide to methodological considerations in the controllability of structural brain networks.
Most humans have the good fortune to live their lives embedded in richly structured social groups. Yet, it remains unclear how humans acquire knowledge about these social structures to successfully navigate social relationships. Here we address this knowledge gap with an interdisciplinary neuroimaging study drawing on recent advances in network science and statistical learning.
View Article and Find Full Text PDFOptimizing direct electrical stimulation for the treatment of neurological disease remains difficult due to an incomplete understanding of its physical propagation through brain tissue. Here, we use network control theory to predict how stimulation spreads through white matter to influence spatially distributed dynamics. We test the theory's predictions using a unique dataset comprising diffusion weighted imaging and electrocorticography in epilepsy patients undergoing grid stimulation.
View Article and Find Full Text PDFChronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures.
View Article and Find Full Text PDFElectrocorticography (ECoG) data can be used to estimate brain-wide connectivity patterns. Yet, the invasiveness of ECoG, incomplete cortical coverage, and variability in electrode placement across individuals make the network analysis of ECoG data challenging. Here, we show that the architecture of whole-brain ECoG networks and the factors that shape it can be studied by analysing whole-brain, interregional and band-limited ECoG networks from a large cohort-in this case, of individuals with medication-resistant epilepsy.
View Article and Find Full Text PDFHuman learners are adept at grasping the complex relationships underlying incoming sequential input. In the present work, we formalize complex relationships as graph structures derived from temporal associations in motor sequences. Next, we explore the extent to which learners are sensitive to key variations in the topological properties inherent to those graph structures.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
February 2019
How do people acquire knowledge about which individuals belong to different cliques or communities? And to what extent does this learning process differ from the process of learning higher-order information about complex associations between nonsocial bits of information? Here, the authors use a paradigm in which the order of stimulus presentation forms temporal associations between the stimuli, collectively constituting a complex network. They examined individual differences in the ability to learn community structure of networks composed of social versus nonsocial stimuli. Although participants were able to learn community structure of both social and nonsocial networks, their performance in social network learning was uncorrelated with their performance in nonsocial network learning.
View Article and Find Full Text PDFNetworked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior.
View Article and Find Full Text PDFEncoding brain regions and their connections as a network of nodes and edges captures many of the possible paths along which information can be transmitted as humans process and perform complex behaviors. Because cognitive processes involve large, distributed networks of brain areas, principled examinations of multi-node routes within larger connection patterns can offer fundamental insights into the complexities of brain function. Here, we investigate both densely connected groups of nodes that could perform local computations as well as larger patterns of interactions that would allow for parallel processing.
View Article and Find Full Text PDFAs the human brain develops, it increasingly supports coordinated control of neural activity. The mechanism by which white matter evolves to support this coordination is not well understood. Here we use a network representation of diffusion imaging data from 882 youth ages 8-22 to show that white matter connectivity becomes increasingly optimized for a diverse range of predicted dynamics in development.
View Article and Find Full Text PDFNetwork science has emerged as a powerful tool through which we can study the higher-order architectural properties of the world around us. How human learners exploit this information remains an essential question. Here, we focus on the temporal constraints that govern such a process.
View Article and Find Full Text PDF