Publications by authors named "Ari Helenius"

Mammalian receptor-mediated endocytosis (RME) often involves at least one of three isoforms of the large GTPase dynamin (Dyn). Dyn pinches-off vesicles at the plasma membrane and mediates uptake of many viruses, although some viruses directly penetrate the plasma membrane. RME is classically interrogated by genetic and pharmacological interference, but this has been hampered by undesired effects.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), uses the viral spike (S) protein for host cell attachment and entry. The host protease furin cleaves the full-length precursor S glycoprotein into two associated polypeptides: S1 and S2. Cleavage of S generates a polybasic Arg-Arg-Ala-Arg carboxyl-terminal sequence on S1, which conforms to a C-end rule (CendR) motif that binds to cell surface neuropilin-1 (NRP1) and NRP2 receptors.

View Article and Find Full Text PDF

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1.

View Article and Find Full Text PDF

My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles.

View Article and Find Full Text PDF

Influenza A virus is a pathogen of great medical impact. To develop novel antiviral strategies, it is essential to understand the molecular aspects of virus-host cell interactions in detail. During entry, the viral ribonucleoproteins (vRNPs) that carry the RNA genome must be released from the incoming particle before they can enter the nucleus for replication.

View Article and Find Full Text PDF

Research over a period of more than half a century has provided a reasonably accurate picture of mechanisms involved in animal virus entry into their host cells. Successive steps in entry include binding to receptors, endocytosis, passage through one or more membranes, targeting to specific sites within the cell, and uncoating of the genome. For some viruses, the molecular interactions are known in great detail.

View Article and Find Full Text PDF

Caveolae are invaginated plasma membrane domains involved in mechanosensing, signaling, endocytosis, and membrane homeostasis. Oligomers of membrane-embedded caveolins and peripherally attached cavins form the caveolar coat whose structure has remained elusive. Here, purified Cavin1 60S complexes were analyzed structurally in solution and after liposome reconstitution by electron cryotomography.

View Article and Find Full Text PDF

Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms.

View Article and Find Full Text PDF

Acid-triggered molecular processes closely control cell entry of many viruses that enter through the endocytic system. In the case of influenza A virus (IAV), virus fusion with the endosomal membrane as well as the subsequent disassembly of the viral capsid, called uncoating, is governed by the ionic conditions inside endocytic vesicles. The early steps in the virus life cycle are hard to study because endosomes cannot be directly accessed experimentally, creating the need for an in vitro approach.

View Article and Find Full Text PDF

Phosphoinositide-3-kinases have been shown to be involved in influenza virus pathogenesis. They are targeted directly by virus proteins and are essential for efficient viral replication in infected lung epithelial cells. However, to date the role of PI3K signaling in influenza infection in vivo has not been thoroughly addressed.

View Article and Find Full Text PDF

Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is an important and widespread pathogen in the human population. While infection by this β-herpesvirus in endothelial, epithelial and dendritic cells depends on endocytosis, its entry into fibroblasts is thought to occur by direct fusion of the viral envelope with the plasma membrane. To characterize individual steps during entry in primary human fibroblasts, we employed quantitative assays as well as electron, fluorescence and live cell microscopy in combination with a variety of inhibitory compounds.

View Article and Find Full Text PDF

The prototypic poxvirus, vaccinia virus (VACV), occurs in two infectious forms, mature virions (MVs) and extracellular virions (EVs). Both enter HeLa cells by inducing macropinocytic uptake. Using confocal microscopy, live-cell imaging, targeted RNAi screening and perturbants of endosome maturation, we analyzed the properties and maturation pathway of the macropinocytic vacuoles containing VACV MVs in HeLa cells.

View Article and Find Full Text PDF

Background: Large-scale RNAi screening has become an important technology for identifying genes involved in biological processes of interest. However, the quality of large-scale RNAi screening is often deteriorated by off-targets effects. In order to find statistically significant effector genes for pathogen entry, we systematically analyzed entry pathways in human host cells for eight pathogens using image-based kinome-wide siRNA screens with siRNAs from three vendors.

View Article and Find Full Text PDF

During cell entry, capsids of incoming influenza A viruses (IAVs) must be uncoated before viral ribonucleoproteins (vRNPs) can enter the nucleus for replication. After hemagglutinin-mediated membrane fusion in late endocytic vacuoles, the vRNPs and the matrix proteins dissociate from each other and disperse within the cytosol. Here, we found that for capsid disassembly, IAV takes advantage of the host cell's aggresome formation and disassembly machinery.

View Article and Find Full Text PDF

In addition to classically defined immune mechanisms, cell-intrinsic processes can restrict virus infection and have shaped virus evolution. The details of this virus-host interaction are still emerging. Following a genome-wide siRNA screen for host factors affecting replication of Semliki Forest virus (SFV), a positive-strand RNA (+RNA) virus, we found that depletion of nonsense-mediated mRNA decay (NMD) pathway components Upf1, Smg5, and Smg7 led to increased levels of viral proteins and RNA and higher titers of released virus.

View Article and Find Full Text PDF

Unlabelled: Influenza A virus (IAV) uses the low pH in late endocytic vacuoles as a cue for penetration by membrane fusion. Here, we analyzed the prefusion reactions that prepare the core for uncoating after it has been delivered to the cytosol. We found that this priming process occurs in two steps that are mediated by the envelope-embedded M2 ion channel.

View Article and Find Full Text PDF
Endocytosis of viruses and bacteria.

Cold Spring Harb Perspect Biol

August 2014

Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens.

View Article and Find Full Text PDF

A two-step, high-throughput RNAi silencing screen was used to identify host cell factors required during human papillomavirus type 16 (HPV16) infection. Analysis of validated hits implicated a cluster of mitotic genes and revealed a previously undetermined mechanism for import of the viral DNA (vDNA) into the nucleus. In interphase cells, viruses were endocytosed, routed to the perinuclear area, and uncoated, but the vDNA failed to be imported into the nucleus.

View Article and Find Full Text PDF

Unlabelled: The Bunyaviridae constitute a large family of enveloped animal viruses, many of which are important emerging pathogens. How bunyaviruses enter and infect mammalian cells remains largely uncharacterized. We used two genome-wide silencing screens with distinct small interfering RNA (siRNA) libraries to investigate host proteins required during infection of human cells by the bunyavirus Uukuniemi virus (UUKV), a late-penetrating virus.

View Article and Find Full Text PDF

Systematic genetic perturbation screening in human cells remains technically challenging. Typically, large libraries of chemically synthesized siRNA oligonucleotides are used, each designed to degrade a specific cellular mRNA via the RNA interference (RNAi) mechanism. Here, we report on data from three genome-wide siRNA screens, conducted to uncover host factors required for infection of human cells by two bacterial and one viral pathogen.

View Article and Find Full Text PDF

Poxvirus genome uncoating is a two-step process. First, cytoplasmic viral cores are activated and early viral genes are expressed. Next, cores are disassembled and the genomes released.

View Article and Find Full Text PDF

Incoming Simian Virus 40 particles bind to their cellular receptor, the glycolipid GM1, in the plasma membrane and thereby induce membrane deformation beneath the virion leading to endocytosis and infection. Efficient membrane deformation depends on receptor lipid structure and the organization of binding sites on the internalizing particle. To determine the role of receptor diffusion, concentration and the number of receptors required for stable binding in this interaction, we analyze the binding of SV40 to GM1 in supported membrane bilayers by computational modeling based on experimental data.

View Article and Find Full Text PDF

The arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with high mortality in humans. Antigen-presenting cells, in particular dendritic cells (DCs), are early and preferred targets of LASV, and their productive infection contributes to the virus-induced immunosuppression observed in fatal disease. Here, we characterized the role of the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in LASV entry into primary human DCs using a chimera of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) expressing the LASV glycoprotein (rLCMV-LASVGP).

View Article and Find Full Text PDF