Heat and the work of compression/decompression are among the basic properties of thermodynamic systems. Being relevant to many industrial and natural processes, this thermomechanical energy is challenging to tune due to fundamental boundaries for simple fluids. Here via direct experimental and atomistic observations, we demonstrate, for fluids consisting of nanoporous material and a liquid, one can overcome these limitations and noticeably affect both thermal and mechanical energies of compression/decompression exploiting preferential intrusion of water from aqueous solutions into subnanometer pores.
View Article and Find Full Text PDFRed mud (RM) is an industrial waste of the aluminum industry with presently estimated worldwide legacy-site stockpiles of 4 billion tones. RM is typically disposed in the sea, dams or dykes, posing a significant environmental hazard due to its high alkalinity and traces of heavy metals. Despite recent valorization efforts, only 15% of RM deposits are currently utilized.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
When compressed, the size of ordinary materials reduces. The opposite effect, when a material or system increases (decreases) its volume upon compression (decompression), is called Negative Compressibility (NC). NC is extremely rare, while being attractive for a wide range of applications.
View Article and Find Full Text PDF