Publications by authors named "Arghyadip Sahoo"

The cytotoxicity of dopamine on cultured cells of neural origin has been used as a tool to explore the mechanisms of dopaminergic neurodegeneration in Parkinson's disease. In the current study, we have shown that dopamine induces a dose-dependent (10-40 μM) and time-dependent (up to 96 h) loss of cell viability associated with mitochondrial dysfunction and increased intra-cellular accumulation of α-synuclein in cultured SH-SY5Y cells. Dopamine-induced mitochondrial dysfunction and the loss of cell viability under our experimental conditions could be prevented by cyclosporine, a blocker of mitochondrial permeability transition pore, as well as the antioxidant N-acetylcysteine.

View Article and Find Full Text PDF
Article Synopsis
  • Synapses are crucial for neuron communication, affecting behavior, body functions, memories, and emotions; their dysfunction can lead to neurological disorders labeled as synaptopathies.
  • Research indicates that defects in synapse function are linked to various neurodevelopmental (like autism and epilepsy) and neurodegenerative disorders (such as Alzheimer's and Parkinson's).
  • Understanding these shared synaptic issues could pave the way for new treatments targeting synapse-related problems in both neurological and neuropsychiatric conditions.
View Article and Find Full Text PDF

The altered metabolism of iron impacts the brain function in multiple deleterious ways during normal aging as well as in Alzheimer's disease. We have shown in this study that chelatable iron accumulates in the aged rat brain along with overexpression of transferrin receptor 1 (TfR1) and ferritin, accompanied by significant alterations in amyloid-β (Aβ) peptide homeostasis in the aging brain, such as an increased production of the amyloid-β protein precursor, a decreased level of neprilysin, and increased accumulation of Aβ42. When aged rats are given daily the iron chelator, deferasirox, over a period of more than 4 months starting from the 18th month, the age-related accumulation of iron and overexpression of TfR1 and ferritin in the brain are significantly prevented.

View Article and Find Full Text PDF

This study has shown that purified recombinant human α-synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α-synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α-synuclein expression by specific siRNA.

View Article and Find Full Text PDF

The increased accumulation of iron in the brain in Alzheimer's disease (AD) is well documented, and excess iron is strongly implicated in the pathogenesis of the disease. The adverse effects of accumulated iron in AD brain may include the oxidative stress, altered amyloid beta-metabolism and the augmented toxicity of metal-bound amyloid beta 42. In this study, we have shown that exogenously added iron in the form of ferric ammonium citrate (FAC) leads to considerable accumulation of amyloid precursor protein (APP) without a corresponding change in the concerned gene expression in cultured SHSY5Y cells during exposure up to 48 h.

View Article and Find Full Text PDF

This study has compared several synaptosomal parameters in three groups of rats: young (46 months), aged (22-24 months) and antioxidant supplemented aged rats (antioxidant supplementation given with the diet as a combination of N-acetylcysteine, α-lipoic acid and α-tocopherol from 18 months onwards till 22-24 months). The synaptosomes from aged rat brain, in comparison to those of young animals, exhibit an increased membrane potential with altered contents of Na(+) and K(+) under basal incubation condition and in the presence of depolarizing agents. The intrasynaptosomal Ca(2+) is also higher in aged than in young rat.

View Article and Find Full Text PDF