Topological insulators are insulators in the bulk but feature chiral energy propagation along the boundary. This property is topological in nature and therefore robust to disorder. Originally discovered in electronic materials, topologically protected boundary transport has since been observed in many other physical systems.
View Article and Find Full Text PDFIn this article, we show that the collective light-matter strong coupling regime where N molecular emitters couple to the photon mode of an optical cavity can be mapped to a quantum impurity model where the photon is the impurity that is coupled to a bath of anharmonic transitions. In the thermodynamic limit where N ≫ 1, we argue that the bath can be replaced with an effective harmonic bath, leading to a dramatic simplification of the problem into one of the coupled harmonic oscillators. We derive simple analytical expressions for linear optical spectra (transmission, reflection, and absorption) where the only molecular input required is the molecular linear susceptibility.
View Article and Find Full Text PDFInteraction between light and molecular vibrations leads to hybrid light-matter states called vibrational polaritons. Even though many intriguing phenomena have been predicted for single-molecule vibrational strong coupling (VSC), several studies suggest that these effects tend to be diminished in the many-molecule regime due to the presence of dark states. Achieving single or few-molecule vibrational polaritons has been constrained by the need for fabricating extremely small mode volume infrared cavities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
The study of molecular polaritons beyond simple quantum emitter ensemble models (e.g., Tavis-Cummings) is challenging due to the large dimensionality of these systems and the complex interplay of molecular electronic and nuclear degrees of freedom.
View Article and Find Full Text PDFWe propose a quantum Stirling heat engine with an ensemble of harmonic oscillators as the working medium. We show that the efficiency of the harmonic oscillator quantum Stirling heat engine (HO-QSHE) at a given frequency can be maximized at a specific ratio of the temperatures of the thermal reservoirs. In the low-temperature or equivalently high-frequency limit of the harmonic oscillators, the efficiency of the HO-QSHE approaches the Carnot efficiency.
View Article and Find Full Text PDF