A series of silica-supported catalysts containing molybdenum, tungsten, and vanadium oxides as the active phase was investigated in the process of oxidative desulfurization with sodium hypochlorite. It was shown for the first time that catalysts containing vanadium oxide as the active phase are more stable under oxidation conditions with sodium hypochlorite and retain their effectiveness at increased dosages of the oxidant and at high initial sulfur contents. The catalysts were characterized in detail by a complex of methods: Fourier transform infrared, X-ray spectral fluorescence, transmission electron microscopy, scanning electron microscopy, and low-temperature nitrogen adsorption/desorption.
View Article and Find Full Text PDFIn this work, new heterogeneous Mo-containing catalysts based on sulfonic titanium dioxide were developed for the oxidation of sulfur-containing model feed. The synergistic effect of molybdenum and sulfonic group modifiers allows for enhancing catalytic activity in dibenzothiophene oxidative transformation, and a strong interaction between support and active component for thus obtained catalysts provides increased stability for leaching. For the selected optimal conditions, the Mo/TiO-SOH catalyst exhibited 100% DBT conversion for 10 min (1 wt % catalyst, molar ratio of HO:DBT, 2:1; 80 °C).
View Article and Find Full Text PDFHerein, we present a new type of high-performance catalyst for aerobic oxidation of organosulfur compounds based on tungsten carbide. The synthesis of tungsten carbide was performed via microwave irradiation of the precursors, which makes it possible to obtain a catalyst in just 15 min. The synthesized catalyst was investigated by a variety of physicochemical methods: X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, electron microscopy, and N adsorption/desorption.
View Article and Find Full Text PDFWe have studied for the first time the role of hydrophobicity of the mesoporous silicate SBA-15 on the activity and the service life of a catalyst in the peroxide oxidation of sulfur-containing compounds. Immobilization of the molybdate anion on the SBA-15 support via ionic bonding with triethylammonium groups allows us not only to decrease the reaction temperature to a relatively low value of 60 °C without a drop in the dibenzothiophene conversion degree but also to increase the service life of the catalyst to many times that of the known analogs. The support and catalyst structures were investigated by low-temperature nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray fluorescence analysis, and transmission electron microscopy.
View Article and Find Full Text PDF