Introduction: This study investigates the potential of an in-situ forming scaffold using a fibrin-based scaffold derived from autologous plasma combined with Synthetic Teriparatide (TP) for bone regeneration application. TP is known for its bone formation stimulation but has limited clinical use due to side effects. This autologous delivery system aims to provide precise, controlled, localized, and long-term release of TP for accelerating bone regeneration.
View Article and Find Full Text PDFReconstructive surgery is a complex and demanding interdisciplinary field. One of the major challenges is the production of sizeable, implantable, inexpensive bioprostheses such as breast implants. In this study, porous hybrid hydrogels were fabricated by a combinatorial method using decellularized human placenta (dHplacenta) and silk fibroin.
View Article and Find Full Text PDFSuitable wound dressings for accelerating wound healing are actively being designed and synthesised. In this study, thiolated chitosan (tCh)/oxidized carboxymethyl cellulose (OCMC) hydrogel containing Cu-doped borate bioglass (BG) was developed as a wound dressing to improve wound healing in a full-thickness skin defect of mouse animal model. Thiolation was used to incorporate thiol groups into chitosan (Ch) to enhance its water solubility and mucoadhesion characteristics.
View Article and Find Full Text PDFThe past decade has evidenced numerous developments in the treatment of heart diseases; however many patients with chronic heart failure suffer from low quality of life. Therapeutic methods, including drug-delivery as well as heart transplantation, have been used to improve quality of life. Cell therapy and tissue engineering have been recently introduced to the field of medicine as a novel therapeutic approach.
View Article and Find Full Text PDFTissue engineering makes it possible to fabricate scaffolds that can help the function of defective tissues or even the most complex organs such as the heart. Carbon nanofibers (CNFs), because of their high mechanical strength and electrical properties, can improve the functional coupling of cardiomyocytes and their electrophysiological properties. In this study, electroactive CNF/gelatin (Gel) nanofibrous cardiac patches were prepared by an electrospinning method.
View Article and Find Full Text PDF