Autophagy is an early-stage response with self-degradation properties against several insulting conditions. To date, the critical role of autophagy has been well-documented in physiological and pathological conditions. This process involves various signaling and functional biomolecules, which are involved in different steps of the autophagic response.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive brain disorder characterized by the ongoing decline of brain functions. Studies have revealed the detrimental effects of hyperphosphorylated tau (p-tau) protein fibrils in AD pathogenesis, highlighting the importance of this factor in the early-stage detection of AD conditions. We designed an electrochemical immunosensor for quantitative detection of the cis conformation of the p-tau protein (cis-p-tau) employing platinum nanoparticles (Pt NPs) supported on zeolitic imidazolate frameworks (ZIF) for modifying the glassy carbon electrode (GCE) surface.
View Article and Find Full Text PDFA novel spectrofluorimetric sensing platform was designed for Ractopamine measurement in aqueous and plasma samples. d-penicillamine functionalized graphene quantum dots (DPA-GQDs) was utilized as a fluorescence probe, which was synthesized through the pyrolysis of citric acid in the presence of DPA. This one-pot down-top strategy causes to high-yield controllable synthesis method.
View Article and Find Full Text PDFChitosan has a number of commercial and possible biomedical uses. Chitosan as a polysaccharide is a bioactive polymer with a variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. In this work, cross-linked chitosan/thiolated graphene quantum dot as a biocompatible polysaccharide was modified by gold nanoparticle and used for immobilization of ractopamine (RAC) aptamer.
View Article and Find Full Text PDF