Publications by authors named "Arezki Boudaoud"

Reproducibility in organ size and shape is a fascinating trait of living organisms. The mechanisms underlying such robustness remain, however, to be elucidated. Taking the sepal of Arabidopsis as a model, we investigated whether variability of gene expression plays a role in variation of organ size and shape.

View Article and Find Full Text PDF

Plant cell growth depends on turgor pressure, the cell hydrodynamic pressure, which drives expansion of the extracellular matrix (the cell wall). Turgor pressure regulation depends on several physical, chemical, and biological factors, including vacuolar invertases, which modulate osmotic pressure of the cell, aquaporins, which determine the permeability of the plasma membrane to water, cell wall remodeling factors, which determine cell wall extensibility (inverse of effective viscosity), and plasmodesmata, which are membrane-lined channels that allow free movement of water and solutes between cytoplasms of neighboring cells, like gap junctions in animals. Plasmodesmata permeability varies during plant development and experimental studies have correlated changes in the permeability of plasmodesmal channels to turgor pressure variations.

View Article and Find Full Text PDF

Living tissues display fluctuations-random spatial and temporal variations of tissue properties around their reference values-at multiple scales. It is believed that such fluctuations may enable tissues to sense their state or their size. Recent theoretical studies developed specific models of fluctuations in growing tissues and predicted that fluctuations of growth show long-range correlations.

View Article and Find Full Text PDF

Stem cell homeostasis in the shoot apical meristem involves a core regulatory feedback loop between the signalling peptide CLAVATA3 (CLV3), produced in stem cells, and the transcription factor WUSCHEL, expressed in the underlying organising centre. clv3 mutant meristems display massive overgrowth, which is thought to be caused by stem cell overproliferation, although it is unknown how uncontrolled stem cell divisions lead to this altered morphology. Here, we reveal local buckling defects in mutant meristems, and use analytical models to show how mechanical properties and growth rates may contribute to the phenotype.

View Article and Find Full Text PDF

Multicellular organisms grow and acquire their shapes through the differential expansion and deformation of their cells. Recent research has addressed the role of cell and tissue mechanical properties in these processes. In plants, it is believed that growth rate is a function of the mechanical stress exerted on the cell wall, the thin polymeric layer surrounding cells, involving an effective viscosity.

View Article and Find Full Text PDF

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control.

View Article and Find Full Text PDF

Living tissues display fluctuations - random spatial and temporal variations of tissue properties around their reference values - at multiple scales. It is believed that such fluctuations may enable tissues to sense their state or their size. Recent theoretical studies developed specific models of fluctuations in growing tissues and predicted that fluctuations of growth show long-range correlations.

View Article and Find Full Text PDF

From smooth to buckled, nature exhibits organs of various shapes and forms. How cellular growth patterns produce smooth organ shapes such as leaves and sepals remains unclear. Here we show that unidirectional growth and comparable stiffness across both epidermal layers of Arabidopsis sepals are essential for smoothness.

View Article and Find Full Text PDF

Extracellular matrices contain fibril-like polymers often organized in parallel arrays. Although their role in morphogenesis has been long recognized, it remains unclear how the subcellular control of fibril synthesis translates into organ shape. We address this question using the Arabidopsis sepal as a model organ.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how a soft spherical particle gets trapped in a rectangular slit, leading to a complex relationship between pressure and flow rate at low Reynolds numbers.
  • - Simulations show that the particle's deformation alters the flow, concentrating streamlines in a small area and significantly raising the resistance to flow as pressure increases.
  • - Two distinct flow regimes are identified: a "flow-dominated" regime with small deformations where flow rate rises with pressure, and an "elastic-dominated" regime where larger deformations obstruct the flow.
View Article and Find Full Text PDF

Hyphal tip growth allows filamentous fungi to colonize space, reproduce, or infect. It features remarkable morphogenetic plasticity including unusually fast elongation rates, tip turning, branching, or bulging. These shape changes are all driven from the expansion of a protective cell wall (CW) secreted from apical pools of exocytic vesicles.

View Article and Find Full Text PDF

The cell wall (CW) is a thin and rigid layer encasing the membrane of all plant and fungal cells. It ensures mechanical integrity by bearing mechanical stresses derived from large cytoplasmic turgor pressure, contacts with growing neighbors or growth within restricted spaces. The CW is made of polysaccharides and proteins, but is dynamic in nature, changing composition and geometry during growth, reproduction or infection.

View Article and Find Full Text PDF

Plants generate motion by absorbing and releasing water. Many Asteraceae plants, such as the dandelion, have a hairy pappus that can close depending on moisture levels to modify dispersal. Here we demonstrate the relationship between structure and function of the underlying hygroscopic actuator.

View Article and Find Full Text PDF

Measuring the mechanical properties of cells and tissues often involves indentation with a sphere or compression between two plates. Different theoretical approaches have been developed to retrieve material parameters (e.g.

View Article and Find Full Text PDF

Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins.

View Article and Find Full Text PDF

Growth and morphogenesis in plants depend on cell wall mechanics and on turgor pressure. Nanoindentation methods, such as atomic force microscopy (AFM), enable measurements of mechanical properties of a tissue at subcellular resolution, while confocal microscopy of tissues expressing fluorescent reporters indicates cell identity. Associating mechanical data with specific cells is essential to reveal the links between cell identity and cell mechanics.

View Article and Find Full Text PDF

Flax ( L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development.

View Article and Find Full Text PDF

As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.

View Article and Find Full Text PDF

In multicellular organisms, sexual reproduction requires the separation of the germline from the soma. In flowering plants, the female germline precursor differentiates as a single spore mother cell (SMC) as the ovule primordium forms. Here, we explored how organ growth contributes to SMC differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in various scientific fields have reignited interest in how mechanical and biochemical interactions contribute to the organization of cells and tissues.
  • New technologies in microscopy and computational analysis allow for better observation and understanding of patterns related to signaling and force generation in living systems.
  • This roadmap presents diverse case studies exploring the dynamic relationship between mechanics and biochemistry, emphasizing its role in shaping organismal development through various processes across different scales and organisms.
View Article and Find Full Text PDF

It is unknown how growth in one tissue impacts morphogenesis in a neighboring tissue. To address this, we used the Drosophila ovarian follicle, in which a cluster of 15 nurse cells and a posteriorly located oocyte are surrounded by a layer of epithelial cells. It is known that as the nurse cells grow, the overlying epithelial cells flatten in a wave that begins in the anterior.

View Article and Find Full Text PDF

Organ size and shape are precisely regulated to ensure proper function. The four sepals in each Arabidopsis thaliana flower must maintain the same size throughout their growth to continuously enclose and protect the developing bud. Here we show that DEVELOPMENT RELATED MYB-LIKE 1 (DRMY1) is required for both timing of organ initiation and proper growth, leading to robust sepal size in Arabidopsis.

View Article and Find Full Text PDF

Cell-to-cell heterogeneity prevails in many systems, as exemplified by cell growth, although the origin and function of such heterogeneity are often unclear. In plants, growth is physically controlled by cell wall mechanics and cell hydrostatic pressure, alias turgor pressure. Whereas cell wall heterogeneity has received extensive attention, the spatial variation of turgor pressure is often overlooked.

View Article and Find Full Text PDF
Article Synopsis
  • Fruits have special structures that help plants grow and spread their seeds, especially after they are fertilized.
  • When seeds start to grow, they send signals to help the fruit grow bigger and take its final shape.
  • This study used cool technology to look closely at how fruit grows after fertilization, finding that fruit grows in stages rather than different areas like leaves do.
View Article and Find Full Text PDF