Publications by authors named "Areti Pantazopoulou"

The pathways of membrane traffic within the Golgi apparatus are not fully known. This question was addressed using the yeast Saccharomyces cerevisiae, in which the maturation of individual Golgi cisternae can be visualized. We recently proposed that the AP-1 clathrin adaptor mediates intra-Golgi recycling late in the process of cisternal maturation.

View Article and Find Full Text PDF

A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process.

View Article and Find Full Text PDF

Coatomer-I (COPI) is a heteromeric protein coat that facilitates the budding of membranous carriers mediating Golgi-to-ER and intra-Golgi transport. While the structural features of COPI have been thoroughly investigated, its physiological role is insufficiently understood. Here we exploit the amenability of A.

View Article and Find Full Text PDF

Hyphal tip cells of Aspergillus nidulans are > 100 µm-long, which challenges intracellular traffic. In spite of the basic and applied interest of the secretory pathway of filamentous fungi, only recently has it been investigated in detail. We used InuA, an inducible and highly glycosylated inulinase, and mutations affecting different intracellular membranous compartments, to investigate the route by which the enzyme traffics to the extracellular medium.

View Article and Find Full Text PDF

Plocabulin (PM060184) is a microtubule depolymerizing agent with potent antiproliferative activity undergoing phase II clinical trials for the treatment of solid tumors. Plocabulin shows antifungal activity virtually abolishing growth of the filamentous fungus Aspergillus nidulans. A.

View Article and Find Full Text PDF

Hyphal tip cells of the fungus are useful for studying long-range intracellular traffic. Post-Golgi secretory vesicles (SVs) containing the RAB11 orthologue RabE engage myosin-5 as well as plus end- and minus end-directed microtubule motors, providing an experimental system with which to investigate the interplay between microtubule and actin motors acting on the same cargo. By exploiting the fact that depolymerization of F-actin unleashes SVs focused at the apex by myosin-5 to microtubule-dependent motors, we establish that the minus end-directed transport of SVs requires the dynein/dynactin supercomplex.

View Article and Find Full Text PDF

Cargo passage through the Golgi, albeit an undoubtedly essential cellular function, is a mechanistically unresolved and much debated process. Although the main molecular players are conserved, diversification of the Golgi among different eukaryotic lineages is providing us with tools to resolve standing controversies. During the past decade the Golgi apparatus of model filamentous fungi, mainly Aspergillus nidulans, has been intensively studied.

View Article and Find Full Text PDF

The oligomeric complex transport protein particle I (TRAPPI) mediates nucleotide exchange on the RAB GTPase RAB1/Ypt1. TRAPPII is composed of TRAPPI plus three additional subunits, Trs120, Trs130, and Trs65. Unclear is whether TRAPPII mediates nucleotide exchange on RAB1/Ypt1, RAB11/Ypt31, or both.

View Article and Find Full Text PDF

Golgi Arf1-guanine nucleotide exchange factors (GEFs) belong to two subfamilies: GBF/Gea and BIG/Sec7. Both are conserved across eukaryotes, but the physiological role of each is not well understood. Aspergillus nidulans has a single member of the early Golgi GBF/Gea-subfamily, geaA, and the late Golgi BIG/Sec7-subfamily, hypB.

View Article and Find Full Text PDF

In the genetic model Aspergillus nidulans, hyphal growth is exquisitely dependent on exocytic traffic. Following mutagenic PCR and gene replacement, we characterized thermosensitive mutations in sarA(SAR1) encoding a key regulator of endoplasmic reticulum (ER) exit. Six sarA(ts) alleles permitting relatively normal growth at 30°C prevented it at 42°C.

View Article and Find Full Text PDF

The mechanism(s) by which proteins traverse and exit the Golgi are incompletely understood. Using Aspergillus nidulans hyphae, we show that late Golgi cisternae undergo changes in composition to gradually lose Golgi identity while acquiring post-Golgi RabE(RAB11) identity. This behavior of late Golgi cisternae is consistent with the cisternal maturation model.

View Article and Find Full Text PDF

We have investigated the target and mechanism of action of a new family of cytotoxic small molecules of marine origin. PM050489 and its dechlorinated analogue PM060184 inhibit the growth of relevant cancer cell lines at subnanomolar concentrations. We found that they are highly potent microtubule inhibitors that impair mitosis with a distinct molecular mechanism.

View Article and Find Full Text PDF

The genetically amenable fungus Aspergillus nidulans is well suited for cell biology studies involving the secretory pathway and its relationship with hyphal tip growth by apical extension. We exploited live-cell epifluorescence microscopy of the ER labeled with the translocon component Sec63, endogenously tagged with GFP, to study the organization of 'secretory' ER domains. The Sec63 A.

View Article and Find Full Text PDF

We exploited the amenability of the fungus Aspergillus nidulans to genetics and live-cell microscopy to investigate autophagy. Upon nitrogen starvation, GFP-Atg8-containing pre-autophagosomal puncta give rise to cup-shaped phagophores and circular (0.9-μm diameter) autophagosomes that disappear in the vicinity of the vacuoles after their shape becomes irregular and their GFP-Atg8 fluorescence decays.

View Article and Find Full Text PDF

The mechanisms governing traffic across the Golgi are incompletely understood. We studied, by live-cell microscopy, the consequences of disorganizing the Aspergillus nidulans Golgi, using an extended set of fluorescent protein markers to resolve early from late cisternae. The early Golgi syntaxin SedV(Sed) (5) and the RabO(Rab) (1) regulatory GTPase play essential roles in secretion, cooperating in the ER-Golgi interface.

View Article and Find Full Text PDF

The genetically tractable filamentous ascomycete fungus Aspergillus nidulans has been successfully exploited to gain major insight into the eukaryotic cell cycle. More recently, its amenability to in vivo multidimensional microscopy has fueled a potentially gilded second age of A. nidulans cell biology studies.

View Article and Find Full Text PDF

We exploit the ease with which highly motile early endosomes are distinguished from static late endosomes in order to study Aspergillus nidulans endosomal traffic. RabS(Rab7) mediates homotypic fusion of late endosomes/vacuoles in a homotypic fusion- and vacuole protein sorting/Vps41-dependent manner. Progression across the endocytic pathway involves endosomal maturation because the end products of the pathway in the absence of RabS(Rab7) are minivacuoles that are competent in multivesicular body sorting and cargo degradation but retain early endosomal features, such as the ability to undergo long-distance movement and propensity to accumulate in the tip region if dynein function is impaired.

View Article and Find Full Text PDF

Earlier, we identified mutations in the first transmembrane segment (TMS1) of UapA, a uric acid-xanthine transporter in Aspergillus nidulans, that affect its turnover and subcellular localization. Here, we use one of these mutations (H86D) and a novel mutation (I74D) as well as genetic suppressors of them, to show that TMS1 is a key domain for proper folding, trafficking and turnover. Kinetic analysis of mutants further revealed that partial misfolding and deficient trafficking of UapA does not affect its affinity for xanthine transport, but reduces that of uric acid and confers a degree of promiscuity towards the binding of other purines.

View Article and Find Full Text PDF

The Aspergillus nidulans Golgi is not stacked. Early and late Golgi equivalents (GEs) are intermingled but can be resolved by epifluorescence microscopy. RabC, the Aspergillus ortholog of mammalian Rab6, is present across the Golgi, preferentially associated with early GEs near the tip and with late GEs in tip-distal regions.

View Article and Find Full Text PDF

Aspergillus nidulans early endosomes display characteristic long-distance bidirectional motility. Simultaneous dual-channel acquisition showed that the two Rab5 paralogues RabB and RabA colocalize in these early endosomes and also in larger, immotile mature endosomes. However, RabB-GTP is the sole recruiter to endosomes of Vps34 PI3K (phosphatidylinositol-3-kinase) and the phosphatidylinositol-3-phosphate [PI(3)P] effector AnVps19 and rabB Delta, leading to thermosensitivity prevents multivesicular body sorting of endocytic cargo.

View Article and Find Full Text PDF

Aspergillus nidulans hyphae grow exclusively by apical extension. Golgi equivalents (GEs) labeled with mRFP-tagged PH(OSBP) domain form a markedly polarized, dynamic network of ring-shaped and fenestrated cisternae that remains intact during "closed" mitosis. mRFP-PH(OSBP) GEs advance associated with the growing apex where secretion predominates but do not undergo long-distance movement toward the tip that could account for their polarization.

View Article and Find Full Text PDF

In fungal hyphal cells, intracellular membrane trafficking is constrained by the relatively long intracellular distances and the mode of growth, exclusively by apical extension. Endocytosis plays a key role in hyphal tip growth, which involves the coupling of secretory membrane delivery to the apical region with subapical compensatory endocytosis. However, the identity, dynamics and function of filamentous fungal endosomal compartments remain largely unexplored.

View Article and Find Full Text PDF

UapA, a uric acid-xanthine permease of Aspergillus nidulans, has been used as a prototype to study structure-function relationships in the ubiquitous nucleobase-ascorbate transporter (NAT) family. Using novel genetic screens, rational mutational design, chimeric NAT molecules, and extensive transport kinetic analyses, we show that dynamic synergy between three distinct domains, transmembrane segment (TMS)1, the TMS8-9 loop, and TMS12, defines the function and specificity of UapA. The TMS8-9 loop includes four residues absolutely essential for substrate binding and transport (Glu356, Asp388, Gln408, and Asn409), whereas TMS1 and TMS12 seem to control, through steric hindrance or electrostatic repulsion, the differential access of purines to the TMS8-9 domain.

View Article and Find Full Text PDF

Early genetic and physiological work in bacteria and fungi has suggested the presence of highly specific nucleobase transport systems. Similar transport systems are now known to exist in algae, plants, protozoa and metazoa. Within the last 15 years, a small number of microbial genes encoding nucleobase transporters have been cloned and studied in great detail.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpqf0odfdea6bfvlsbn32e17npmcl4dhg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once