Publications by authors named "Arenda H van Beek"

Older adults show more bilateral prefrontal activation during cognitive performance than younger adults, who typically show unilateral activation. This over-recruitment has been interpreted as compensation for declining structure and function of the brain. Here we examined how the relationship between behavioral performance and prefrontal activation is modulated by different levels of working-memory load.

View Article and Find Full Text PDF

Cerebral autoregulation (CA) is a key mechanism to protect the brain against excessive fluctuations in blood pressure (BP) and maintain cerebral blood flow. Analyzing the relationship between spontaneous BP and cerebral blood flow velocity (CBFV) using transfer function analysis is a widely used technique to quantify CA in a non-invasive way. The objective of this review was to provide an overview of transfer function techniques used in the assessment of CA.

View Article and Find Full Text PDF

With ageing, cerebral blood flow velocity (CBFV) decreases; however, to what extent dynamic cerebral autoregulation and cerebrovascular CO2 reactivity are influenced by ageing is unknown. The aim was to examine the dynamic responses of CBFV and cortical oxygenation to changes in blood pressure (BP) and arterial CO2 across different ages. Fifty-eight participants in three age groups were included, as follows: young (n = 20, 24 ± 2 years old), elderly (n = 20, 66 ± 1 years old), and older elderly (n = 18, 78 ± 3 years old).

View Article and Find Full Text PDF

Background: Understanding the relationship between vascular disease and Alzheimer's disease (AD) will enhance our insight into this disease and pave the way for novel therapeutic research. Cerebrovascular dysfunction, expressed as impaired cerebral autoregulation and cerebral vasomotor reactivity, has been observed in transgenic mouse models for AD. Translation to human AD is limited and conflicting however.

View Article and Find Full Text PDF

Spontaneous slow oscillations occur in cerebral hemodynamics and blood pressure (BP), and may reflect neurogenic, metabolic or myogenic control of the cerebral vasculature. Aging is accompanied by a degeneration of the vascular system, which may have consequences for regional cerebral blood flow and cognitive performance. This degeneration may be reflected in a reduction of spontaneous slow oscillations of cerebral hemodynamics and BP.

View Article and Find Full Text PDF

Working memory is sensitive to aging-related decline. Evidence exists that aging is accompanied by a reorganization of the working-memory circuitry, but the underlying neurocognitive mechanisms are unclear. In this study, we examined aging-related changes in prefrontal activation during working-memory performance using functional Near-Infrared Spectroscopy (fNIRS), a noninvasive neuroimaging technique.

View Article and Find Full Text PDF

Background And Purpose: The breath hold maneuver is a convenient and frequently used method to assess cerebrovascular reactivity (CR). This study aimed to assess feasibility and reproducibility of this method in healthy older persons.

Methods: Twenty-five healthy volunteers, aged 75 (SD 4) years, performed 2 consecutive breath holds after careful instruction.

View Article and Find Full Text PDF

In Alzheimer's disease (AD) cerebrovascular function is at risk. Transcranial Doppler, near-infrared spectroscopy, and photoplethysmography are noninvasive methods to continuously measure changes in cerebral blood flow velocity (CBFV), cerebral cortical oxygenated hemoglobin (O(2)Hb), and blood pressure (BP). In 21 patients with mild to moderate AD and 20 age-matched controls, we investigated how oscillations in cerebral blood flow velocity (CBFV) and O(2)Hb are associated with spontaneous and induced oscillations in blood pressure (BP) at the very low (VLF = 0.

View Article and Find Full Text PDF

Cerebrovascular function and structure of the cortical cerebral microvessels are profoundly altered in patients with Alzheimer's disease (AD). The functional hemodynamic consequences of such changes, however, remain essentially unknown. Cholinesterase inhibitors (ChEIs) potentially affect brain perfusion through either augmentation or inhibition of cerebral vasodilatation.

View Article and Find Full Text PDF

The intrinsic cholinergic innervation of the cortical microvessels contains both subcortical pathways and local cortical interneurons mediated by muscarinic and nicotinic acetylcholine receptors. Stimulation of this system leads to vasodilatation. In the extrinsic innervation, choline acts as a selective agonist for the α7-nicoticinic acetylcholine receptor on the sympathetic nerves to cause vasodilatation, and through this mechanism, cholinergic modulation may affect this sympathetic vasodilatation.

View Article and Find Full Text PDF

The aim of this study was to assess the feasibility and reproducibility of a simple and nonobtrusive repeated sit-stand maneuver to assess cerebral autoregulation (CA) in healthy old subjects >70 years. In 27 subjects aged 76 (SD 4) years, we continuously measured blood pressure using photoplethysmography and cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler ultrasonography) during 5 min of sitting rest and again during repeated sit-stand maneuvers at 10 s (0.05 Hz) and 5 s (0.

View Article and Find Full Text PDF

Cerebral autoregulation (CA) refers to the properties of the brain vascular bed to maintain cerebral perfusion despite changes in blood pressure (BP). Whereas classic studies have assessed CA during changes in BP that have a gradual onset, dynamic studies quantify the fast modifications in cerebral blood flow (CBF) in relation to rapid alterations in BP. There is a lack of standardization in the assessment of dynamic CA.

View Article and Find Full Text PDF